年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
-x2+(a-1)x+a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1-a |
x |
1 |
3 |
5 |
12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1-a |
x |
1 |
2 |
1 |
3 |
5 |
12 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年周至二中三模理)(14分)已知函數(shù):.
(1)證明:f(x)+2+f(2a-x)=0對定義域內(nèi)的所有x都成立;
(2)當(dāng)f(x)的定義域?yàn)閇a+,a+1]時(shí),求證:f(x)的值域?yàn)閇-3,-2];
(3)設(shè)函數(shù)g(x)=x2+|(x-a)f(x)| ,求g(x) 的最小值 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆湖北省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)f(x)=lnx-ax+-1.
(1) 當(dāng)a=1時(shí), 過原點(diǎn)的直線與函數(shù)f(x)的圖象相切于點(diǎn)P, 求點(diǎn)P的坐標(biāo);
(2) 當(dāng)0<a<時(shí), 求函數(shù)f(x)的單調(diào)區(qū)間;
(3) 當(dāng)a=時(shí), 設(shè)函數(shù)g(x)=x2-2bx-, 若對于x1∈, [0, 1]使f(x1)≥g(x2)成立, 求實(shí)數(shù)b的取值范圍.(e是自然對數(shù)的底, e<+1).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com