橢圓
x2
4
+y2=1
的長軸為A1A2,短軸為B1B2,將坐標(biāo)平面沿y軸折成一個(gè)二面角,使點(diǎn)A1在平面B1A2B2上的射影恰是該橢圓的一個(gè)焦點(diǎn),則此二面角的大小為( 。
A、30B、45
C、60D、arctan2
分析:由已知中橢圓
x2
4
+y2=1
的長軸為A1A2,短軸為B1B2,將坐標(biāo)平面沿y軸折成一個(gè)二面角,使點(diǎn)A1在平面B1A2B2上的射影恰是該橢圓的一個(gè)焦點(diǎn),我們可以畫出滿足條件的圖象,利用圖象的直觀性,分析出∠FOA1即為所求二面角的平面角,解三角形FOA1即可求出二面角的大。
解答:解:由題意畫出滿足條件的圖象如下圖所示:
精英家教網(wǎng)
由圖可得∠FOA1即為所求二面角的平面角
∵橢圓的標(biāo)準(zhǔn)方程為
x2
4
+y2=1
,
則OA1=2,OF=
3

∴cos∠FOA1=
OF
OA1
=
3
2

∴∠FOA1=30°
故選A
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二面角的平面角及求法,其中根據(jù)已知條件畫出滿足條件的圖象,結(jié)合圖象分析出滿足條件的二面角的平面角是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
4
+y2=1
的兩個(gè)焦點(diǎn)為F1、F2,過F1作垂直于x軸的直線與橢圓相交,一個(gè)交點(diǎn)為P,則P到F2的距離為(  )
A、
3
2
B、
3
C、
7
2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓
x24
+y2=1
的焦點(diǎn)為F1、F2,點(diǎn)P為橢圓上任意一點(diǎn),過F2作∠F1PF2的外角平分線的垂線,垂足為點(diǎn)Q,過點(diǎn)Q作y軸的垂線,垂足為N,線段QN的中點(diǎn)為M,則點(diǎn)M的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△AOQ,O為坐標(biāo)原點(diǎn),點(diǎn)A(1,0),Q為橢圓
x24
+y2=1上的動(dòng)點(diǎn),求AQ中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浙江模擬)已知A,B是雙曲線
x2
4
-y2=1
的兩個(gè)頂點(diǎn),點(diǎn)P是雙曲線上異于A,B的一點(diǎn),連接PO(O為坐標(biāo)原點(diǎn))交橢圓
x2
4
+y2=1
于點(diǎn)Q,如果設(shè)直線PA,PB,QA的斜率分別為k1,k2,k3,且k1+k2=-
15
8
,假設(shè)k3>0,則k3的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•上饒二模)已知橢圓
x2
4
+y2=1
的下頂點(diǎn)為A,點(diǎn)B是橢圓上的任意的一點(diǎn),點(diǎn)C、D是直線x-y-4=0上的兩點(diǎn)(C在D的下方),則
AB
CD
|
CD
|
的最大值是( 。

查看答案和解析>>

同步練習(xí)冊答案