精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)
已知為坐標原點,點分別在軸上運動,且=8,動點滿足 =,設點的軌跡為曲線,定點為直線交曲線于另外一點
(1)求曲線的方程;
(2)求 面積的最大值。

(1) (2)

解析試題分析:解:(1)設,


曲線C的方程為
(2)由(1)可知,M(4,0)為橢圓的右焦點,設直線PM方程為,代入,得

===

,即時,的面積取得最大值
此時直線方程為
考點:本試題考查了直線方程與橢圓的知識。
點評:解決該試題的關鍵是能利用已知中的點和斜率來借助于點斜式方程表示出直線的方程,同時能結合直線與橢圓的相交,聯立方程組,進而結合韋達定理和判別式來求解表示出長軸長,借助于參數a的范圍得到所求的最值,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本題滿分12分)
已知直線與曲線交于不同的兩點為坐標原點.
(1)若,求證:曲線是一個圓;
(2)若,當時,求曲線的離心率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知兩點F1(-1,0)及F2(1,0),點P在以F1、F2為焦點的橢圓C上,且|PF1|、|F1F2|、|PF2|構成等差數列.

(1)求橢圓C的方程;
(2)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l,F2N⊥l.求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
拋物線的焦點與雙曲線的右焦點重合.
(Ⅰ)求拋物線的方程;
(Ⅱ)求拋物線的準線與雙曲線的漸近線圍成的三角形的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(14分)如圖,已知拋物線C1: y=x2, 與圓C2: x2+(y+1)2="1," 過y軸上一點A(0, a)(a>0)作圓C2的切線AD,切點為D(x0, y0).

(1)證明:(a+1)(y0+1)=1
(2)若切線AD交拋物線C1于E,且E為AD的中點,求點A縱坐標a.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分15分)
已知點,是拋物線上相異兩點,且滿足
(Ⅰ)若的中垂線經過點,求直線的方程;
(Ⅱ)若的中垂線交軸于點,求的面積的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分10分)
已知一條曲線上的點到定點的距離是到定點距離的二倍,求這條曲線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知、分別是橢圓的左、右焦點。
(1)若是第一象限內該橢圓上的一點,,求點P的坐標;
(2)設過定點M(0,2)的直線與橢圓交于不同的兩點A、B,且為銳角(其中為坐標原點),求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分16分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(理)已知橢圓的一個焦點為,點在橢圓上,點滿足(其中為坐標原點),過點作一直線交橢圓于、兩點 .
(1)求橢圓的方程;
(2)求面積的最大值;
(3)設點為點關于軸的對稱點,判斷的位置關系,并說明理由.

查看答案和解析>>

同步練習冊答案