已知在四棱錐S-ABCD中,底面ABCD為矩形,SA⊥平面ABCD,AE⊥SB于E,EF⊥SC于F,求證:AF⊥SC.
考點:直線與平面垂直的性質(zhì)
專題:證明題,空間位置關系與距離
分析:證明SC⊥平面AEF即可,得到AF⊥SC.
解答:
證明:∵SA⊥平面AC,
∴SA⊥BC.
∵AB⊥BC,且SA∩AB=A,
∴BC⊥平面SAB,
∴BC⊥AE,
又∵AE⊥SB,且SB∩BC=B,
∴AE⊥平面SBC,
∴AE⊥SC,且EF⊥SC,AE∩EF=E,
∴SC⊥平面AEF,
∴AF⊥SC.
點評:本題重點考查了空間中直線與直線垂直、直線與平面垂直、平面與平面垂直的判定和性質(zhì)等知識,屬于基本知識的考查,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若B={-1,3,5},試寫出一個集合A=
 
,使得f:x→2x-1是A到B的映射.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:tan(-
26π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

3<m<5是方程
x2
m-3
+
y2
m-8
=1
表示的圖形為雙曲線的( 。
A、充分但非必要條件
B、必要但非充分條件
C、充分必要條件
D、既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,橢圓
x2
16
+
y2
9
=1的左、右焦點分別為F1、F2,一條直線l經(jīng)過點F1與橢圓交于A、B兩點.
(1)求△ABF2的周長;
(2)若直線l的傾斜角為45°,求△ABF2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:sin[nπ+(-1)n
π
3
].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,下列幾種說法正確的是( 。
A、A1C1與B1C成60°角
B、D1C1⊥AB
C、AC1與DC成45°角
D、A1C1⊥AD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2是雙曲線的兩個焦點.若此雙曲線上存在點P滿足|PF1|=3|PF2|,則該雙曲線的離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直線y=2x+1上有一點P,過點P且垂直于直線4x+3y-3=0的直線與圓x2+y2-2x=0有公共點,則點P的橫坐標的取值范圍是( 。
A、(-∞,-1)∪(1,+∞)
B、(-1,1)
C、[-
12
5
,-
2
5
]
D、(-
12
5
,-
2
5

查看答案和解析>>

同步練習冊答案