數(shù)列{an}的通項(xiàng)公式an=
n+1
-
n
(n∈N*),若前n項(xiàng)的和Sn=10,則項(xiàng)數(shù)n為( 。
分析:依題意,可求得Sn=
n+1
-1,又Sn=10,從而可求得項(xiàng)數(shù)n.
解答:解:∵an=
n+1
-
n
,
∴Sn=(
2
-1)+(
3
-
2
)+(
4
-
3
)+…+(
n+1
-
n

=
n+1
-1,
又Sn=10,
n+1
-1=10,
∴n+1=112=121,
∴n=120.
故選C.
點(diǎn)評:本題考查數(shù)列的求和,考查累加法求和與解方程,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和Sn=2n2+n-1,則數(shù)列{an}的通項(xiàng)公為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,且滿足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求數(shù)列{an}的通項(xiàng)公an
(2)若記bn=(2n+1)•(
1Sn
+2)
,Tn為數(shù)列{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,且滿足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求數(shù)列{an}的通項(xiàng)公an
(2)若記數(shù)學(xué)公式,Tn為數(shù)列{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

數(shù)列{an}的前n項(xiàng)和Sn=2n2+n-1,則數(shù)列{an}的通項(xiàng)公為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2002-2003學(xué)年北京市朝陽區(qū)高一(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

數(shù)列{an}的前n項(xiàng)和Sn=2n2+n-1,則數(shù)列{an}的通項(xiàng)公為   

查看答案和解析>>

同步練習(xí)冊答案