如圖,在長(zhǎng)方體中,點(diǎn)在棱上.

(1)求異面直線所成的角;

(2)若二面角的大小為,求點(diǎn)到面的距離.

 

【答案】

(1)對(duì)于異面直線的所成的角,一般采用平移法,平移到一個(gè)三角形中,借助于余弦定理求解。

(2)

【解析】

試題分析:解法一:(1)連結(jié).由是正方形知.

平面,

在平面內(nèi)的射影.

根據(jù)三垂線定理得,

則異面直線所成的角為. 5分

(2)作,垂足為,連結(jié),則.

所以為二面角的平面角,.于是,

易得,所以,又,所以.

設(shè)點(diǎn)到平面的距離為,則由于,

因此有,即,∴.…………12分

解法二:如圖,分別以軸,軸,軸,建立空間直角坐標(biāo)系.

(1)由,得,

設(shè),又,則.

,則異面直線所成的角為. 5分

(2)為面的法向量,設(shè)為面的法向量,則

,

.      ①

,得,則,即,∴

②由①、②,可取,又,

所以點(diǎn)到平面的距離. 12分

考點(diǎn):異面直線所成的角,點(diǎn)到面的距離

點(diǎn)評(píng):考查了異面直線所成的角以及點(diǎn)到面的距離的求解,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方體中,點(diǎn)分別在上,且

(1)求證:平面;

(2)若規(guī)定兩個(gè)平面所成的角是這兩個(gè)平面所組成的二面角中的銳角(或直角),則在空間有定理:若兩條直線分別垂直于兩個(gè)平面,則這兩條直線所成的角與這兩個(gè)平面所成角相等,試根據(jù)上述定理,在時(shí),求平面與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方體中,點(diǎn)在棱的延長(zhǎng)線上,

(Ⅰ) 求證://平面 ;(Ⅱ) 求證:平面平面

(Ⅲ)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方體中,點(diǎn)在線段上.

(Ⅰ)求異面直線所成的角;

(Ⅱ)若二面角的大小為,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省高三第一次質(zhì)檢文科數(shù)學(xué)卷 題型:解答題

(12分)如圖,在長(zhǎng)方體中,點(diǎn)在棱的延長(zhǎng)線上,且

(Ⅰ)求證://平面 ;

(Ⅱ)求證:平面平面; 

                        

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:福建省2010屆高三高考模擬試卷文科數(shù)學(xué) 題型:解答題

(本小題12分)如圖,在長(zhǎng)方體中,點(diǎn)在棱的延長(zhǎng)線上,且

(1)求證:∥平面;

(2)求證:平面平面

(3)求四面體的體積.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案