【題目】如圖,四棱柱的底面為菱形,且.

(1)證明:四邊形為矩形;

(2)若,與平面所成的角為,求二面角的余弦值.

【答案】(1)見解析(2)

【解析】試題分析:(1)由四棱柱性質(zhì)可知四邊形 為平行四邊形,連接,設(shè),連接.易證∴平面,∴.∵,∴; (2) 過(guò)點(diǎn)平面,垂足為,由已知可得點(diǎn)上,證明點(diǎn)與點(diǎn)重合,則平面,以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系求出平面與平面的法向量,代入公式計(jì)算即可.

試題解析:

(1)證明:連接,設(shè),連接.

,∴.

的中點(diǎn),∴..

平面,∴.

,∴.

又四邊形是平行四邊形,則四邊形為矩形.

(2)解:過(guò)點(diǎn)平面,垂足為,由已知可得點(diǎn)上,∴.

設(shè),則.

在菱形中,,∴.

∴點(diǎn)與點(diǎn)重合,則平面.

為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系.

.

.

設(shè)平面的法向量為,則 ,∴

,可得為平面的一個(gè)法向量.

同理可得平面的一個(gè)法向量為

.所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從高一年級(jí)隨機(jī)選取100名學(xué)生,對(duì)他們期中考試的數(shù)學(xué)和語(yǔ)文成績(jī)進(jìn)行分析,成績(jī)?nèi)鐖D所示.

(Ⅰ)從這100名學(xué)生中隨機(jī)選取一人,求該生數(shù)學(xué)和語(yǔ)文成績(jī)均低于60分的概率;

(II)從語(yǔ)文成績(jī)大于80分的學(xué)生中隨機(jī)選取兩人,記這兩人中數(shù)學(xué)成績(jī)高于80分的人數(shù)為,求的分布列和數(shù)學(xué)期望(;

(Ill)試判斷這100名學(xué)生數(shù)學(xué)成績(jī)的方差與語(yǔ)文成績(jī)的方差的大小.(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形, 平面 分別是線段, 的中點(diǎn), .

求證: 平面

求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)fx)是奇函數(shù),且滿足f3-x=fx),f-1=3,數(shù)列{an}滿足a1=1an=nan+1-an)(nN*),則fa36+fa37=(  )

A. B. C. 2D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn+n=2annN*).

1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;

2)若bn=nan+n,數(shù)列{bn}的前n項(xiàng)和為Tn,求滿足不等式n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】襄陽(yáng)市擬在2021年奧體中心落成后申辦2026年湖北省省運(yùn)會(huì),據(jù)了解,目前武漢,宜昌,黃石等申辦城市因市民擔(dān)心賽事費(fèi)用超支而準(zhǔn)備相繼退出,某機(jī)構(gòu)為調(diào)查襄陽(yáng)市市民對(duì)申辦省運(yùn)會(huì)的態(tài)度,選取某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計(jì)如下:

支持

不支持

合計(jì)

年齡不大于50

60

年齡大于50

10

合計(jì)

80

100

1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

2)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為不同年齡與支持申辦省運(yùn)會(huì)無(wú)關(guān)?

附: , .

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測(cè)標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸之間近似滿足關(guān)系式(為大于0的常數(shù)).現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測(cè)得數(shù)據(jù)如下:

對(duì)數(shù)據(jù)作了初步處理,相關(guān)統(tǒng)計(jì)位的值如下表:

(1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;

(2)按照某項(xiàng)指標(biāo)測(cè)定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時(shí)為優(yōu)等品.現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記為取到優(yōu)等品的件數(shù),試求隨機(jī)變量的分布列和期望.

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從高三抽出名學(xué)生參加數(shù)學(xué)競(jìng)賽,由成績(jī)得到如下的頻率分布直方圖.試?yán)妙l率分布直方圖求:

1)這名學(xué)生成績(jī)的眾數(shù)與中位數(shù);

2)這名學(xué)生的平均成績(jī).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】研究變量,得到一組樣本數(shù)據(jù),進(jìn)行回歸分析,有以下結(jié)論

①殘差平方和越小的模型,擬合的效果越好;

②用相關(guān)指數(shù)來(lái)刻畫回歸效果,越小說(shuō)明擬合效果越好;

③線性回歸方程對(duì)應(yīng)的直線至少經(jīng)過(guò)其樣本數(shù)據(jù)點(diǎn)中的一個(gè)點(diǎn);

④若變量之間的相關(guān)系數(shù)為,則變量之間的負(fù)相關(guān)很強(qiáng).

以上正確說(shuō)法的個(gè)數(shù)是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案