6.已知$tan(\frac{π}{4}+α)=2$,則sin2α=$\frac{3}{5}$.

分析 利用兩角和與差的三角函數(shù)求出角的正切函數(shù)值,利用同角三角函數(shù)基本關(guān)系式化簡所求的表達(dá)式為正弦函數(shù)的形式,代入求解即可.

解答 解:由$tan({\frac{π}{4}+α})=2$,即$\frac{1+tanα}{1-tanα}=2$,解得$tanα=\frac{1}{3}$,
所以$sin2α=\frac{2sinαcosα}{{{{sin}^2}α+{{cos}^2}α}}=\frac{2tanα}{{1+{{tan}^2}α}}=\frac{{\frac{2}{3}}}{{1+\frac{1}{9}}}=\frac{3}{5}$.
故答案為:$\frac{3}{5}$.

點(diǎn)評(píng) 本題考查兩角和與差的三角函數(shù),同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a>b>0,a+b=1,且x=(${\frac{1}{a}}$)b,y=log${\;}_{\frac{1}{ab}}}$ab,z=log${\;}_{\frac{1}}}$a,則x、y、z的大小關(guān)系是( 。
A.y<z<xB.z<y<xC.x<y<zD.y<x<z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的相鄰兩項(xiàng)an,an+1是關(guān)于x的方程x2-2nx+bn=0,(n∈N*)的兩根,且a1=1
(1)求證:數(shù)列{an-$\frac{1}{3}$×2n}是等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn
(3)若bn-mSn>0對(duì)任意的n∈N*都成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩焦點(diǎn)為F1,F(xiàn)2,離心率為$\frac{{\sqrt{2}}}{2}$,直線l與橢圓相交于A(x1,y1),B(x2,y2)兩點(diǎn),且滿足$|A{F_1}|+|A{F_2}|=4\sqrt{2}$,O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)設(shè)向量$\overrightarrow m=(\frac{x_1},\frac{y_1}{a})$,$\overrightarrow n=(\frac{x_2},\frac{y_2}{a})$,且$\overrightarrow m•\overrightarrow n=0$,試證明△AOB的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點(diǎn)F是拋物線C:y=ax2(a≠0)的焦點(diǎn),點(diǎn)A在拋物線C上,則以線段AF為直徑的圓與x軸的位置關(guān)系是( 。
A.相離B.相交C.相切D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知k>0,x,y滿足約束條件$\left\{{\begin{array}{l}{x≥2}\\{x+y≤4}\\{y≥k(x-4)}\end{array}}\right.$,若z=x-y的最大值為4,則k的取值范圍是(  )
A.(0,1)B.(0,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.將函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象向左平移$\frac{π}{2}$個(gè)單位,若所得圖象與原圖象重合,則ω的值可能等于( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.有下列各式:①sin1125°;②tan$\frac{37}{12}$π•sin$\frac{37}{12}$π;③$\frac{sin4}{tan4}$;④sin|-1|,其中為負(fù)值的序號(hào)是( 。
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=\frac{{{x^2}+a}}{e^x}({x∈R})$(e是自然對(duì)數(shù)的底數(shù),e≈2.71).
(1)當(dāng)a=-15時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在區(qū)間$[{\frac{1}{e},e}]$上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案