15.已知在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系.曲線C1的極坐標(biāo)方程為ρ2(3+sin2θ)=12,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}\right.$(t為參數(shù),$α∈(0,\frac{π}{2})$).
(1)求曲線C1的直角坐標(biāo)方程,并判斷該曲線是什么曲線;
(2)設(shè)曲線C2與曲線C1的交點(diǎn)為A,B,P(1,0),當(dāng)$|PA|+|PB|=\frac{7}{2}$時(shí),求cosα的值.

分析 (1)利用極坐標(biāo)與直角坐標(biāo)的關(guān)系化簡(jiǎn)曲線C1的極坐標(biāo)方程為普通方程;
(2)對(duì)參數(shù)方程x,y代入橢圓方程,然后根據(jù)直線參數(shù)方程的幾何意義,設(shè)|PA|=|t1|,|PB|=|t2|,結(jié)合韋達(dá)定理得到所求.

解答 解:(1)由ρ2(3+sin2θ)=12得$\frac{x^2}{4}+\frac{y^2}{3}=1$,該曲線為橢圓.(5分)
(2)將$\left\{{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}}\right.$代入$\frac{x^2}{4}+\frac{y^2}{3}=1$得t2(4-cos2α)+6tcosα-9=0,
由直線參數(shù)方程的幾何意義,設(shè)|PA|=|t1|,|PB|=|t2|,${t_1}+{t_2}=\frac{-6cosα}{{4-{{cos}^2}α}}$,${t_1}{t_2}=\frac{-9}{{4-{{cos}^2}α}}$,
所以$|PA|+|PB|=|{t_1}-{t_2}|=\sqrt{{{({t_1}+{t_2})}^2}-4{t_1}{t_2}}=\frac{12}{{4-{{cos}^2}α}}=\frac{7}{2}$,
從而${cos^2}α=\frac{4}{7}$,由于$α∈(0,\frac{π}{2})$,所以$cosα=\frac{{2\sqrt{7}}}{7}$.(10分)

點(diǎn)評(píng) 本小題主要考查極坐標(biāo)系與參數(shù)方程的相關(guān)知識(shí),具體涉及到極坐標(biāo)方程與平面直角坐標(biāo)方程的互化、把曲線的參數(shù)方程和曲線的極坐標(biāo)方程聯(lián)立求交點(diǎn)等內(nèi)容.本小題考查考生的方程思想與數(shù)形結(jié)合思想,對(duì)運(yùn)算求解能力有一定要求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=(2x-4)ex+a(x+2)2.(a∈R,e為自然對(duì)數(shù)的底)
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)P(0,f(0))處的切線方程;
(Ⅱ)當(dāng)x≥0時(shí),不等式f(x)≥4a-4恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知2sinθ=1-cosθ,則tanθ=( 。
A.-$\frac{4}{3}$或0B.$\frac{4}{3}$或0C.-$\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列函數(shù)中,既是奇函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是(  )
A.y=ex+e-xB.y=ln(|x|+1)C.$y=\frac{sinx}{|x|}$D.$y=x-\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知定義域?yàn)镽的函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(1,1),且對(duì)?x∈R,都有f'(x)>-2,則不等式$f({log_2}|{3^x}-1|)<3-{log_{\sqrt{2}}}|{3^x}-1|$的解集為( 。
A.(-∞,0)∪(0,1)B.(0,+∞)C.(-1,0)∪(0,3)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖是民航部門統(tǒng)計(jì)的2017年春運(yùn)期間十二個(gè)城市售出的往返機(jī)票的平均價(jià)格以及相比去年同期變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖表,根據(jù)圖表,下面敘述不正確的是( 。
A.深圳的變化幅度最小,北京的平均價(jià)格最高
B.深圳和廈門的春運(yùn)期間往返機(jī)票價(jià)格同去年相比有所下降
C.平均價(jià)格從高到低居于前三位的城市為北京、深圳、廣州
D.平均價(jià)格變化量從高到低居于前三位的城市為天津、西安、廈門

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.集合A={-1,0,1,2,3},B={x|log2(x+1)<2},則A∩B等于( 。
A.{-1,0,1,2}B.{0,1,2}C.{-1,0,1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A={x|x2-x-2<0},B={y|y=ex,x<ln3},則A∪B=(  )
A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆湖南衡陽(yáng)縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

已知,則等于( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案