5.在極坐標(biāo)系中,求圓ρ=8sinθ上的點到直線θ=$\frac{π}{3}$(ρ∈R)距離的最大值.

分析 把直線與圓的極坐標(biāo)方程化為直角坐標(biāo)方程,利用點到直線的距離公式即可得出.

解答 解:圓ρ=8sinθ即:ρ2=8ρsinθ,化為x2+y2=8y,配方為:x2+(y-4)2=16,可得圓心(0,4),半徑r=4.
直線θ=$\frac{π}{3}$(ρ∈R)即y=$\sqrt{3}$x.
∴圓心到直線的距離d=$\frac{4}{2}$=2.
∴圓ρ=8sinθ上的點到直線θ=$\frac{π}{3}$(ρ∈R)距離的最大值=d+r=2+4=6.

點評 本題考查了極坐標(biāo)與直角坐標(biāo)方程的互化、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在直三棱柱ABC-A1B1C1中,AA1=AC=1,BC=$\sqrt{2}$,AB=$\sqrt{3}$,M是棱B1C1的中點,N是對角線AB1的中點.
(1)求證:CN⊥平面BNM;
(2)求二面角C-BN-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.平面內(nèi)有向量$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(-4,-5),$\overrightarrow{OP}$=(cosα,sinα),當(dāng)α為何值時,f(α)=$\overrightarrow{PA}$•$\overrightarrow{PB}$能取得最大值,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,已知AB是⊙O的直徑,點D是⊙O上一點,過點D作⊙O的切線,交AB的延長線于點C,過點C作AC的垂線,交AD的延長線于點E.
(Ⅰ)求證:△CDE為等腰三角形;
(Ⅱ)若AD=2,$\frac{BC}{CE}$=$\frac{1}{2}$,求⊙O的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)z=(2-i)×i(i為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,圓O的半徑為1,A,B,C是圓周上的三點,過點A作圓O的切線與OC的延長線交于點P,若CP=AC,則∠COA=$\frac{π}{3}$;AP=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平面直角坐標(biāo)系中,點A的坐標(biāo)為(2,3),點B的坐標(biāo)為(-1,-1),將直角坐標(biāo)平面沿x軸折成直二面角,則A,B兩點間的距離為$\sqrt{19}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系中x軸的正半軸重合,若曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3+2cosα}\\{y=2sinα}\end{array}\right.$(α是參數(shù)),直線l的極坐標(biāo)方程為$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=1.
(1)將曲線C的參數(shù)方程化為極坐標(biāo)方程;
(2)由直線l上一點向曲線C引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.橢圓x2+4y2=4的離心率為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{3}{4}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案