若函數(shù)f(x)=sin(ωx+
π
6
)(ω>0)相鄰兩個(gè)零點(diǎn)之間的距離為
π
3
,則ω的值為
 
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:由函數(shù)f(x)=sin(ωx+
π
6
)(ω>0)相鄰兩個(gè)零點(diǎn)之間的距離為
π
3
,可得函數(shù)的半周期為
π
3
,進(jìn)一步求得周期,由周期公式求得ω的值.
解答: 解:∵函數(shù)f(x)=sin(ωx+
π
6
)(ω>0)相鄰兩個(gè)零點(diǎn)之間的距離為
π
3
,即
T
2
=
π
3

T=
ω
=
3
,ω=3.
故答案為:3.
點(diǎn)評(píng):本題考查了由y=Asin(ωx+φ)的部分圖象求函數(shù)解析式,考查了三角函數(shù)的周期公式,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
OA
=(a,b),|
OA
|=1,求點(diǎn)P(a+b,ab)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-2)2=4及直線l:x-y+3=0,則直線l被C截得的弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的方程:4-x-6×(
1
2
x+8=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sinx(sinx+cosx).
(Ⅰ)求f(x)最小正周期;
(Ⅱ)求函數(shù)f(x)的最大值及此時(shí)x的值的集合;
(Ⅲ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知k∈R,設(shè)f(θ)=cos2θ+(k-4)sinθ+2k-9,其中θ∈[0,2π).
(1)當(dāng)k=3時(shí),求f(θ)的最值,并求相應(yīng)的θ;
(2)若對(duì)任意θ∈[0,2π),f(θ)≤0恒成立,求k的取值范圍;
(3)若存在唯一的θ∈[0,2π),使f(θ)≤0,求θ、k的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
e
是單位向量,求滿足
a
e
a
e
=-18的向量
a
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P的極坐標(biāo)為(
2
,
π
4
),則點(diǎn)P的直角坐標(biāo)為( 。
A、(1,1)
B、(1,-1)
C、(-1,1)
D、(-1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

家電下鄉(xiāng)是我國應(yīng)對(duì)當(dāng)前國際金融危機(jī),惠農(nóng)強(qiáng)農(nóng)、帶動(dòng)工業(yè)生產(chǎn)促進(jìn)消費(fèi)、拉動(dòng)內(nèi)需的一項(xiàng)重要舉措,某市某家電制造集團(tuán)在家電下鄉(xiāng)運(yùn)輸中不斷優(yōu)化方案使運(yùn)輸效率(單位時(shí)間的運(yùn)輸量)逐步提高,則下圖能反應(yīng)實(shí)際的運(yùn)輸量Q歲時(shí)間t變化的是(  )
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案