19.已知定義在R上的函數(shù)f(x)=2|x|-1,記a=f(log0.53),b=f(log25),$c=f(lo{g_2}\frac{1}{4})$,則a,b,c的大小關系為(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

分析 利用對數(shù)函數(shù)的性質(zhì)及指數(shù)函數(shù)的性質(zhì)求解.

解答 解:∵定義在R上的函數(shù)f(x)=2|x|-1,
∴a=f(log0.53)=${2}^{|lo{g}_{0.5}3|}$-1=${2}^{lo{g}_{2}3}$-1=3-1=2,
b=f(log25)=${2}^{|lo{g}_{2}5|}$-1=${2}^{lo{g}_{2}5}$-1=4,
$c=f(lo{g_2}\frac{1}{4})$=f(-2)=2|-2|-1=22-1=3.
∴a<c<b.
故選:C.

點評 本題考查三個數(shù)的大小的比較,是基礎題,解題時要認真審題,注意對數(shù)函數(shù)的性質(zhì)及指數(shù)函數(shù)的性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,兩圓⊙O,⊙O′內(nèi)切于點T,點P為外圓⊙O上任意一點,PM與內(nèi)圓⊙O′切于點M.求證:PM:PT為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.下列說法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實數(shù)b=2;
②f(x)=$\sqrt{2008-{x}^{2}}$+$\sqrt{{x}^{2}-2008}$既是奇函數(shù)又是偶函數(shù);
③已知f(x)是定義在R上的奇函數(shù),若當x∈[0,+∞)時,f(x)=x(1+x),則當x∈R時,f(x)=x(1+|x|);
④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(x•y)=x•f(y)+y•f(x),則f(x)是奇函數(shù).
其中正確說法的序號是①②③④(注:把你認為是正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.直線3x-2y+a=0與連接A(3,1)和B(-2,3)的線段相交,則a的取值范圍是( 。
A.a≤-7或a≥12B.a=-7或a=12C.-7≤a≤12D.-12≤a≤7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)f(x)=x3+x+1(x∈R),若f(a)=2,則f(-a)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知Sn為等差數(shù)列{an}的前n項和,a3+a7=6,則S9=( 。
A.27B.$\frac{27}{2}$C.54D.108

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點到左頂點的距離等于它到漸近線距離的2倍,則其離心率為( 。
A.$\frac{\sqrt{17}}{3}$B.$\sqrt{5}$C.$\frac{5}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{ln(5-x)}{\sqrt{x+3}}$的定義域為M,N={x|a+1<x<2a-1},
(1)當a=4時,求(∁RM)∩N;
(2)若N⊆M,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.如圖在三棱錐S-ABC中,SA=SB=SC,且$∠ASB=∠BSC=∠CSA=\frac{π}{2}$,M、N分別是AB和SC的中點.則異面直線SM與BN所成的角的余弦值為$\frac{{\sqrt{10}}}{5}$,直線SM與面SAC所成角大小為$\frac{π}{4}$.

查看答案和解析>>

同步練習冊答案