9.如圖在三棱錐S-ABC中,SA=SB=SC,且$∠ASB=∠BSC=∠CSA=\frac{π}{2}$,M、N分別是AB和SC的中點(diǎn).則異面直線SM與BN所成的角的余弦值為$\frac{{\sqrt{10}}}{5}$,直線SM與面SAC所成角大小為$\frac{π}{4}$.

分析 連接MC,取MC中點(diǎn)為Q,連接NQ,BQ,則NQ和SM平行,∠QNB(或其補(bǔ)角)即為SM和BN所成的角,利用余弦定理可得結(jié)論;由題意,∠ASM為直線SM與面SAC所成角,即可求解.

解答 解:連接MC,取MC中點(diǎn)為Q,連接NQ,BQ
則NQ和SM平行,∠QNB(或其補(bǔ)角)即為SM和BN所成的角.
設(shè)SA=SB=SC=a,則AB=BC=CA=$\sqrt{2}$a
因?yàn)?∠ASB=∠BSC=∠CSA=\frac{π}{2}$,△ABC是正三角形,M、N、Q是中點(diǎn)
所以:NQ=$\frac{1}{2}$SM=$\frac{\sqrt{2}}{4}$a,MC=$\frac{\sqrt{6}}{2}$a,QB=$\frac{\sqrt{14}}{4}$a,NB=$\frac{\sqrt{5}}{2}$a
∴cos∠QNB=$\frac{\sqrt{10}}{5}$,
∴異面直線SM與BN所成角的余弦值為$\frac{\sqrt{10}}{5}$,
由題意,∠ASM為直線SM與面SAC所成角,∵SA=SB,∠ASB=$\frac{π}{2}$,
∴∠ASM=$\frac{π}{4}$
故答案為$\frac{\sqrt{10}}{5}$,$\frac{π}{4}$.

點(diǎn)評 本題考查線線角、線面角,考查余弦定理,考查學(xué)生的計(jì)算能力,正確作出線線角、線面角是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知定義在R上的函數(shù)f(x)=2|x|-1,記a=f(log0.53),b=f(log25),$c=f(lo{g_2}\frac{1}{4})$,則a,b,c的大小關(guān)系為(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$f(x)=\sqrt{2-x}+\frac{3+x}{2x-1}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,2]B.(-∞,$\frac{1}{2}$)∪($\frac{1}{2}$,2]C.($\frac{1}{2}$,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|-1<x≤0},B={a},A∪B=A,則實(shí)數(shù)a的取值范圍是( 。
A.[0,1)B.(-1,1)C.(-1,0]D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}|{{{log}_2}x}|,0<x<2\\ sin({\frac{π}{4}x}),2≤x≤10\end{array}\right.$,若存在實(shí)數(shù)x1,x2,x3,x4,滿足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則$\frac{{({{x_3}-1})({{x_4}-1})}}{{{x_1}{x_2}}}$的取值范圍是(9,21).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)y=x2-mx-3m+3的圖象過點(diǎn)(0,6),則它的解析式為( 。
A.y=x2-x+6B.y=x2+x+6C.y=x2-3x+6D.y=x2+3x+6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)某省高中男生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全省100000名男生的身高服從正態(tài)分布N(170.5,16)現(xiàn)從該省某校高三年級男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于157.5cm和187.5cm之間,將測量結(jié)果按如下方式分成6組:第一組[157.5,162.5]第二組[162.5,167.5],…第6組[182.5,187.5],如圖是按上述分組方法得到的頻率分布直方圖.
(1)求該學(xué)校高三年級男生的平均身高;
(2)求這50名男生身高在177.5cm以上(含177.5cm)的人數(shù);
(3)在這50名男生身高在177.5cm以上含(177.5cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全省前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
參考數(shù)據(jù):
若ξ~N(μ,σ2).則P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知△ABC中2cosB•sinC=sinA,則三角形的形狀是(  )
A.等腰三角形B.直角三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖是一個(gè)空間幾何體的三視圖,則該幾何體的表面積是(  )
A.1+$\sqrt{2}$+$\sqrt{3}$B.2+$\sqrt{2}$+$\sqrt{3}$C.3+$\sqrt{2}$+$\sqrt{3}$D.4+$\sqrt{2}$+$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案