分析 (1)記g(x)=ex-bx,當(dāng)b=1時(shí),g′(x)=ex-1,從而可得f′(1)=g′(1)=e-1,由此可求切線方程;
(2)由g′(x)=ex-b=0,得x=lnb,從而可得在x=lnb時(shí),g(x)取極小值g(lnb)=b-blnb=b(1-lnb),再分類討論,即可得到結(jié)論.
解答 解:(1)記g(x)=ex-bx.
當(dāng)b=1時(shí),g′(x)=ex-x.
當(dāng)x>0時(shí),g′(x)>0,所以g(x)在(0,+∞)上為增函數(shù).
又g(0)=1>0,所以當(dāng)x∈(0,+∞)時(shí),g(x)>0.
所以當(dāng)x∈(0,+∞)時(shí),f(x)=|g(x)|=g(x),
所以f′(1)=g′(1)=e-1.
所以曲線y=f(x)在點(diǎn)(1,e-1)處的切線方程為:y-(e-1)=(e-1)(x-1),即y=(e-1)x. …(6分)
(2)由g′(x)=ex-b=0,得x=lnb.
當(dāng)x∈(-∞,lnb)時(shí),g′(x)<0,g(x)單調(diào)遞減.
當(dāng)x∈(lnb,+∞)時(shí),g′(x)>0,g(x)單調(diào)遞增.
所以在x=lnb時(shí),g(x)取極小值g(lnb)=b-blnb=b(1-lnb).
①當(dāng)0<b≤e時(shí),g(lnb)=b-blnb=b(1-lnb)≥0,從而當(dāng)x∈R時(shí),g(x)≥0.
所以f(x)=|g(x)|=g(x)在(-∞,+∞)上無(wú)極大值.
因此,在x∈(0,2)上也無(wú)極大值. …(8分)
②當(dāng)b>e時(shí),g(lnb)<0.
因?yàn)間(0)=1>0,g(2lnb)=b2-2blnb=b(b-2lnb)>0,
(令k(x)=x-2lnx.由k′(x)=1-$\frac{2}{x}$=0得x=2,從而當(dāng)x∈(2,+∞)時(shí),k(x)單調(diào)遞增,
又k(e)=e-2>0,所以當(dāng)b>e時(shí),b-2lnb>0.)
所以存在x1∈(0,lnb),x2∈(lnb,2lnb),使得g(x1)=g(x2)=0.
此時(shí)f(x)=|g(x)|,
所以f(x)在(-∞,x1)單調(diào)遞減,在(x1,lnb)上單調(diào)遞增,在(lnb,x2)單調(diào)遞減,在(x2,+∞)上單調(diào)遞增. …(12分)
所以在x=lnb時(shí),f(x)有極大值.
因?yàn)閤∈(0,2),所以當(dāng)lnb<2,即e<b<e2時(shí),f(x)在(0,2)上有極大值;
當(dāng)lnb≥2,即b≥e2 時(shí),f(x)在(0,2)上不存在極大值.
綜上所述,在區(qū)間(0,2)上,當(dāng)0<b≤e或b≥e2時(shí),函數(shù)y=f(x)不存在極大值;
當(dāng)e<b<e2時(shí),函數(shù)y=f(x),在x=lnb時(shí)取極大值f(lnb)=b(lnb-1).…(14分)
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的極值,考查分類討論的數(shù)學(xué)思想,難度較大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{15}{2}π$ | B. | 12π | C. | 15π | D. | 24π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{e}$-2 | B. | 1-2e | C. | 1-e | D. | 2-$\frac{1}{e}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com