5.已知曲線C:y=$\sqrt{4-{x^2}}$(0≤x≤2)與函數(shù)f(x)=logax(a>1)及它的反函數(shù)g(x)的圖象分別交于A(x1,y1),B(x2,y2)兩點,則x12+x22的值為(  )
A.16B.8C.4D.2

分析 利用函數(shù)f(x)=logax(a>1)的圖象與其反函數(shù)g(x)=ax的圖象關(guān)于直線y=x對稱,即可得出.

解答 解:函數(shù)f(x)=logax(a>1)的圖象與其反函數(shù)g(x)=ax的圖象關(guān)于直線y=x對稱,
∴(x1,x2)滿足y=$\sqrt{4-{x^2}}$(0≤x≤2),
∴x12+x22=4,
故選:C.

點評 本題考查了反函數(shù)的性質(zhì)、指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=$\sqrt{\frac{8{x}^{2}+9}{2{x}^{2}+1}}$的值域是(2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)是R上的奇函數(shù),f(1)=2,且對任意x∈R都有f(x+6)=f(x)+f(3)成立,則f(3)=0;f(2013)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}是等差數(shù)列,若它的前n項和Sn有最小值,且$\frac{{a}_{2012}}{{a}_{2011}}$<-1,則使Sn>0成立的最小自然數(shù)n的值為( 。
A.4022B.2022C.4021D.2021

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x${\;}^{-{k}^{2}+k+2}$(k∈Z)且f(2)<f(3)
(1)求實數(shù)k的值;
(2)試判斷是否存在正數(shù)p,使函數(shù)g(x)=1-pf(x)+(2p-1)x在區(qū)間[-1,2]上的值域為[-4,$\frac{17}{8}$],若存在,求出這個p的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.用分數(shù)指數(shù)冪表示$\sqrt{{a^{\frac{1}{2}}}\sqrt{{a^{\frac{1}{2}}}\sqrt{a}}}$(a>0)其結(jié)果是(  )
A.aB.${a^{\frac{1}{2}}}$C.${a^{\frac{1}{4}}}$D.${a^{\frac{1}{6}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.對于函數(shù)f(x)=a-$\frac{2}{{{2^x}+1}}$(a∈R)
(Ⅰ)探索函數(shù)f(x)的單調(diào)性;
(Ⅱ)是否存在實數(shù)a,使函數(shù)f(x)為奇函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.用二分法求方程的近似根,精確度為δ,用直到型循環(huán)結(jié)構(gòu)的終止條件是(  )
A.|x1-x2|>δB.|x1-x2|<δC.x1<δ<x2D.x1=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在極坐標系中,直線θ=α與ρcos(θ-α)=1位置關(guān)系(  )
A.平行B.垂直C.相交但不垂直D.不能確定

查看答案和解析>>

同步練習(xí)冊答案