【題目】在一個古典型(或幾何概型)中,若兩個不同隨機事件、概率相等,則稱是“等概率事件”,如:隨機拋擲一枚骰子一次,事件“點數(shù)為奇數(shù)”和“點數(shù)為偶數(shù)”是“等概率事件”,關于“等概率事件”,以下判斷正確的是__________.

①在同一個古典概型中,所有的基本事件之間都是“等概率事件”;

②若一個古典概型的事件總數(shù)為大于2的質(zhì)數(shù),則在這個古典概型中除基本事件外沒有其他“等概率事件”;③因為所有必然事件的概率都是1,所以任意兩個必然事件是“等概率事件”;

④隨機同時拋擲三枚硬幣一次,則事件“僅有一個正面”和“僅有兩個正面”是“等概率事件”.

【答案】①④

【解析】對于①,由古典概型的定義知,所有基本事件的概率都相等,故所有基本事件之間都是“等概率事件”。故①正確。

對于②,如在1,3,5,7,9五個數(shù)中,任取兩個數(shù)所得和為10包括“1和9”與“3和7”兩種情況,這兩種情況的概率相等。故②錯誤。

對于③,由本題的條件可知“等概率事件”是針對于同一個古典概型的。故③不正確。

對于④,隨機同時拋擲三枚硬幣一次共有8中不同的結果,其中“僅有一個正面”包含3種結果,其概率為;“僅有兩個正面” 包含3種結果,其概率為。故這兩個事件是“等概率事件”。故④正確。

綜上可得①④正確。

答案:①④

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形是直角梯形, , , 底面, , , 的中點.

(1)求證:平面平面

(2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明計劃在811日至820日期間游覽某主題公園,根據(jù)旅游局統(tǒng)計數(shù)據(jù),該主題公園在此期間“游覽舒適度”(即在園人數(shù)與景區(qū)主管部門核定的最大瞬時容量之比, 以下為舒適, 為一般, 以上為擁擠),情況如圖所示,小明隨機選擇8月11日至8月19日中的某一天到達該主題公園,并游覽.

(1)求小明連續(xù)兩天都遇上擁擠的概率;

(2)設是小明游覽期間遇上舒適的天數(shù),求的分布列和數(shù)學期望;

(3)由圖判斷從哪天開始連續(xù)三天游覽舒適度的方差最大?(結論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用長14.8 m的鋼條制作一個長方體容器的框架如果所制的底面的一邊比另一邊長0.5 m,那么容器的最大容積為________m3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知θ∈[0, ],直線xsinθ+ycosθ﹣1=0和圓C:(x﹣1)2+(y﹣cosθ)2= 相交所得的弦長為 ,則θ=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知:以點C(t, )(t∈R,t≠0)為圓心的圓與x軸交于點O,A,與y軸交于點O,B,其中O為原點.
(1)當t=2時,求圓C的方程;
(2)求證:△OAB的面積為定值;
(3)設直線y=﹣2x+4與圓C交于點M,N,若|OM|=|ON|,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知α,β為銳角, , ,求α+2β.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于任意的實數(shù)m∈[0,1],mx2﹣2x﹣m≥2,則x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點處的切線斜率為1,求函數(shù)的單調(diào)區(qū)間;

(2)若時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案