【題目】觀察下列三角形數(shù)表:
假設(shè)第n行的第二個(gè)數(shù)為 ,
(1)歸納出an+1與an的關(guān)系式,并求出an的通項(xiàng)公式;
(2)設(shè)anbn=1(n≥2),求證:b2+b3+…+bn<2.
【答案】
(1)解:依題意an+1=an+n(n≥2),a2=2,
,
所以
(2)解:因?yàn)閍nbn=1,所以 ,
【解析】(1)利用數(shù)列的關(guān)系歸納出an+1與an的關(guān)系式,利用累加法求解即可.(2)利用放縮法化簡(jiǎn)通項(xiàng)公式,通過(guò)裂項(xiàng)消項(xiàng)法求解即可.
【考點(diǎn)精析】利用數(shù)列的前n項(xiàng)和和歸納推理對(duì)題目進(jìn)行判斷即可得到答案,需要熟知數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;根據(jù)一類事物的部分對(duì)象具有某種性質(zhì),退出這類事物的所有對(duì)象都具有這種性質(zhì)的推理,叫做歸納推理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線C:x2=4y,過(guò)點(diǎn)M(0,2)任作一直線與C相交于A,B兩點(diǎn),過(guò)點(diǎn)B作y軸的平行線與直線AO相交于點(diǎn)D(O為坐標(biāo)原點(diǎn)).
(1)證明動(dòng)點(diǎn)D在定直線上;
(2)作C的任意一條切線l(不含x軸),與直線y=2相交于點(diǎn)N1,與(1)中的定直線相交于點(diǎn)N2,證明|MN2|2-|MN1|2為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知b(1+cosC)=c(2﹣cosB).
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為4 ,求c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖程序框圖的算法思路源于數(shù)學(xué)名著《幾何原本》中的“輾轉(zhuǎn)相除法”,執(zhí)行該程序框圖(圖中“m MOD n”表示m除以n的余數(shù)),若輸入的m,n分別為495,135,則輸出的m=( )
A.0
B.5
C.45
D.90
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=2cos2x的圖象向右平移 個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( )
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題,其中正確的命題是____.(填出所有正確命題的序號(hào))
①x=是y=sin(2x+)的一條對(duì)稱軸;
②y=esin2x是以π為周期在(0,)上的增函數(shù);
③函數(shù)y=3sin(2x+)的圖象可由y=3sin2x的圖象向左平移個(gè)單位得到.
④設(shè)x1、x2是關(guān)于x的方程|logax|=k(a>0,a≠1,k>0)的兩根,則x1x2=1;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=3,AD=2,AB=2,BC=6.
(1)求證:BD⊥平面PAC; (2)求二面角P-BD-A的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,橢圓與軸交于 兩點(diǎn),且.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),且直線與直線分別交于 兩點(diǎn).是否存在點(diǎn)使得以 為直徑的圓經(jīng)過(guò)點(diǎn)?若存在,求出點(diǎn)的橫坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),函數(shù).
(1)若,極大值;
(2)若無(wú)零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若有兩個(gè)相異零點(diǎn),,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com