2.已知橢圓的長軸長是8,焦距為6,則此橢圓的標準方程是( 。
A.$\frac{x^2}{16}+\frac{y^2}{9}=1$B.$\frac{x^2}{16}+\frac{y^2}{7}$=1或$\frac{x^2}{7}+\frac{y^2}{16}=1$
C.$\frac{x^2}{16}+\frac{y^2}{25}=1$D.$\frac{x^2}{16}+\frac{y^2}{25}=1$或$\frac{x^2}{25}+\frac{y^2}{16}=1$

分析 分類討論,a=4,2c=6,c=3,b2=a2-c2=7,即可求得橢圓方程.

解答 解:假設(shè)橢圓的焦點在x軸上,設(shè)橢圓方程$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),
由2a=8,則a=4,2c=6,c=3,b2=a2-c2=7,
∴橢圓的標準方程:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{7}=1$;
同理:當橢圓的焦點在y軸上,橢圓的方程:$\frac{{x}^{2}}{7}+\frac{{y}^{2}}{16}=1$,
∴橢圓的標準方程$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{7}=1$或$\frac{{x}^{2}}{7}+\frac{{y}^{2}}{16}=1$,
故選B.

點評 本題考查橢圓的標準方程,考查分類討論思想,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.下列函數(shù)中最值是$\frac{1}{2}$,周期是6π的三角函數(shù)的解析式是(  )
A.y=$\frac{1}{2}$sin($\frac{x}{3}+\frac{π}{6}$)B.y=$\frac{1}{2}$sin(3x+$\frac{π}{6}$)C.y=2sin($\frac{x}{3}-\frac{π}{6}$)D.y=$\frac{1}{2}$sin(x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.用反證法證明命題:“自然數(shù)a,b,c中恰有一個是偶數(shù)”時,要做的假設(shè)是( 。
A.a,b,c中至少有兩個偶數(shù)
B.a,b,c中至少有兩個偶數(shù)或都是奇數(shù)
C.a,b,c都是奇數(shù)
D.a,b,c都是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.當n≥2,n∈N*時,求證:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$>$\sqrt{n}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=$\frac{x^2}{2}$-alnx.
(Ⅰ)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;
(Ⅲ)若函數(shù)f(x)在區(qū)間(1,e2]內(nèi)恰有兩個零點,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點分別為F1、F2,P為橢圓上一點,且PF1⊥PF2,若△PF1F2的面積為9,則b=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)c1,c2,…,cn是a1,a2,…,an的某一排列(a1,a2,…,an均為正數(shù)),則$\frac{{a}_{1}}{{c}_{1}}$+$\frac{{a}_{2}}{{c}_{2}}$+…+$\frac{{a}_{n}}{{c}_{n}}$的最小值是(  )
A.2nB.$\frac{1}{n}$C.$\sqrt{n}$D.n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.下列說法中正確的有:①②
①若0<α<$\frac{π}{2}$,則sinα<α<tanα
②若α是第二象限角,則$\frac{α}{2}$是第一或第三象限角;
③與向量$\overrightarrow{a}$=(3,4)共線的單位向量只有$\overrightarrow{a}$=$(\frac{3}{5}$,$\frac{4}{5}$);
④函數(shù)f(x)=2x-8的零點是(3,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且asinC=$\sqrt{3}$ccosA.
(1)求角A的大。
(2)若b=6,c=3,求a的值.

查看答案和解析>>

同步練習冊答案