【題目】如圖,四棱錐C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,點E、F分別為棱AB、PD的中點.
(1)求證:AF∥平面PEC
(2)求證:平面PCD⊥平面PEC;
(3)求三棱錐C-BEP的體積.
【答案】(Ⅰ)(Ⅱ)證明見解析;(Ⅲ)
【解析】
19、證明: (Ⅰ)取PC的中點G,連結FG、EG,
∴FG為△CDP的中位線,
∴FGCD,……………………………………… 1分
∵四邊形ABCD為矩形,E為AB的中點,
∴ABCD,Z.X.X.K]
∴FGAE,
∴四邊形AEGF是平行四邊形,
∴AF∥EG,
又EG平面PCE,AF平面PCE,………… 3分
∴AF∥平面PCE;……………………………… 4分
(Ⅱ)∵ PA⊥底面ABCD,
∴PA⊥AD,PA⊥CD,又AD⊥CD,PAAD=A,
∴CD⊥平面ADP,
又AF平面ADP,∴CD⊥AF,…………………………………………………………… 6分
直角三角形PAD中,∠PDA=45°,
∴△PAD為等腰直角三角形,
∴PA=AD=2,……………………………………………………………………………… 7分
∵F是PD的中點,
∴AF⊥PD,又CDPD=D,
∴AF⊥平面PCD,…………………………………………………………………………… 8分
∵AF∥EG,
∴EG⊥平面PCD,…………………………………………………………………………… 9分
又EG平面PCE,
平面PCE⊥平面PCD;……………………………………………………………………… 10分
(Ⅲ)三棱錐C-BEP即為三棱錐P-BCE,………………………………………… 11分
PA是三棱錐P-BCE的高,
Rt△BCE中,BE=1,BC=2,
∴三棱錐C-BEP的體積
V三棱錐C-BEP=V三棱錐P-BCE
=.…………… 14分
科目:高中數學 來源: 題型:
【題目】已知數列{an}的通項公式為an=﹣2n+p,數列{bn}的通項公式為bn=2n﹣4 , 設cn= ,若在數列{cn}中c6<cn(n∈N* , n≠6),則p的取值范圍( )
A.(11,25)
B.(12,22)
C.(12,17)
D.(14,20)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = ,G是BC的中點。沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF.
(1)若以F、B、C、D為頂點的三棱錐的體積記為,求的最大值;
(2)當 取得最大值時,求二面角D-BF-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ,曲線y=f(x)在點x=e2處的切線與直線x﹣2y+e=0平行.
(1)若函數g(x)= f(x)﹣ax在(1,+∞)上是減函數,求實數a的最小值;
(2)若函數F(x)=f(x)﹣ 無零點,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=,x∈(-2,2).
(1) 判斷f(x)的奇偶性并說明理由;
(2) 求證:函數f(x)在(-2,2)上是增函數;
(3) 若f(2+a)+f(1-2a)>0,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知不過第二象限的直線l:ax-y-4=0與圓x2+(y-1)2=5相切.
(1)求直線l的方程;
(2)若直線l1過點(3,-1)且與直線l平行,直線l2與直線l1關于直線y=1對稱,求直線l2的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com