12.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥4}\\{f(x+1),x<4}\end{array}\right.$,則f(2+log23)的值為( 。
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{12}$D.$\frac{1}{24}$

分析 由已知得f(2+log23)=f(3+log23)=($\frac{1}{2}$)${\;}^{3+lo{g}_{2}3}$,由此能求出結(jié)果.

解答 解:∵f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥4}\\{f(x+1),x<4}\end{array}\right.$,
∴f(2+log23)=f(3+log23)=($\frac{1}{2}$)${\;}^{3+lo{g}_{2}3}$
=$(\frac{1}{2})^{3}×(\frac{1}{2})^{lo{g}_{2}3}$
=$\frac{1}{8}×\frac{1}{3}$
=$\frac{1}{24}$.
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.命題:“若x2<1,則x<1”的逆否命題是( 。
A.若x2≥1,則x≥1B.若x≥1,則x2≥1C.若x>1,則x2>1D.若x<1,則x2<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在空間內(nèi),可以確定一個(gè)平面的條件是(  )
A.三個(gè)點(diǎn)
B.兩條直線
C.兩兩相交的三條直線,且有三個(gè)不同的交點(diǎn)
D.三條直線,其中一條直線與另外兩條直線分別相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知直線x-y+1=0經(jīng)過(guò)橢圓S:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>o)$的一個(gè)焦點(diǎn)和一個(gè)頂點(diǎn).如圖,M,N分別是橢圓S的頂點(diǎn),過(guò)坐標(biāo)原點(diǎn)的直線交橢圓于P、A兩點(diǎn),其中P在第一象限,過(guò)P作x軸的垂線,垂足為C,連接AC,并延長(zhǎng)交橢圓于點(diǎn)B,設(shè)直線PA的斜率為k.
(Ⅰ)若直線PA平分線段MN,求k的值;
(Ⅱ)對(duì)任意k>0,求證:PA⊥PB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知$f(α)=\frac{{{{cos}^2}({\frac{π}{2}-α})sin({\frac{π}{2}+α})cot({\frac{π}{2}-α})}}{{sin({-π+α})tan({-α+3π})}}$
(1)化簡(jiǎn)f(α);
(2)若$f(α)=\frac{1}{8}$,且$\frac{π}{4}<α<\frac{π}{2}$,求cosα-sinα的值;
(3)若$α=-\frac{31π}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}的前n項(xiàng)和Sn,滿足Sn=2an-2n,bn=an+2.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)記cn=log2bn,數(shù)列$\{\frac{1}{{{c_n}{c_{n+1}}}}\}$的前n項(xiàng)和為Tn,證明${T_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知隨機(jī)變量ξ服從正態(tài)分布N(1,4),若p(ξ>4)=0.2,則p(-2≤ξ≤4)=0.6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=2sinxcosx-2cos2x+1的單調(diào)遞增區(qū)間為( 。
A.$(2kπ-\frac{π}{8},2kπ+\frac{3π}{8})(k∈Z)$B.$(2kπ+\frac{3π}{8},2kπ+\frac{7π}{8})(k∈Z)$
C.$(kπ-\frac{π}{8},kπ+\frac{3π}{8})(k∈Z)$D.$(kπ+\frac{3π}{8},kπ+\frac{7π}{8})(k∈Z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若tanα=3,則sin2α=$\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案