9.在三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,則當(dāng)△AEF的面積最大時(shí),BC=$\frac{\sqrt{6}}{3}$.

分析 如圖所示,設(shè)AC=x,利用線面垂直的性質(zhì)定理可得:PA⊥AB,PA⊥AC.又AE⊥PB于E,AF⊥PC于F,PA=AB=2,利用三角形面積計(jì)算公式可得:AE=$\sqrt{2}$,AF=$\frac{2x}{\sqrt{4+{x}^{2}}}$.又∠ACB=90°,可得AF⊥平面PBC,AF⊥EF,S△AEF=$\frac{1}{2}$AF•EF,通過(guò)換元利用二次函數(shù)的單調(diào)性即可得出.

解答 解:如圖所示,設(shè)AC=x,
∵PA⊥底面ABC,∴PA⊥AB,PA⊥AC.
又AE⊥PB于E,AF⊥PC于F,PA=AB=2,
∴AE=$\frac{2×2}{2\sqrt{2}}$=$\sqrt{2}$,AF=$\frac{2x}{\sqrt{4+{x}^{2}}}$.
又∠ACB=90°,∴BC⊥AF,
又PC∩BC=C,∴AF⊥平面PBC.
又EF?平面PBC.
∴AF⊥EF,
EF=$\sqrt{A{E}^{2}-A{F}^{2}}$=$\sqrt{\frac{8-2{x}^{2}}{4+{x}^{2}}}$.
∴S△AEF=$\frac{1}{2}$AF•EF=$\frac{1}{2}×$$\frac{2x}{\sqrt{4+{x}^{2}}}$×$\sqrt{\frac{8-2{x}^{2}}{4+{x}^{2}}}$=$\sqrt{\frac{8{x}^{2}-2{x}^{4}}{(4+{x}^{2})^{2}}}$.
令4+x2=t>4,∴x2=t-4.
f(t)=$\frac{8(t-4)-2(t-4)^{2}}{{t}^{2}}$=$\frac{-2{t}^{2}+24t-64}{{t}^{2}}$=$-64(\frac{1}{t}-\frac{3}{16})^{2}$+$\frac{1}{4}$,
當(dāng)t=$\frac{16}{3}$,即x=$\frac{2\sqrt{3}}{3}$時(shí),f(t)取得最大值$\frac{1}{4}$.
∴BC=$\sqrt{A{B}^{2}-A{C}^{2}}$=$\frac{\sqrt{6}}{3}$時(shí),S△AEF取得最大值$\frac{1}{2}$.
故答案為:$\frac{\sqrt{6}}{3}$.

點(diǎn)評(píng) 本題考查了線面垂直的判定與性質(zhì)定理、勾股定理、直角三角形的邊角關(guān)系、二次函數(shù)的性質(zhì)、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.正方體ABCD-A1B1C1D1中,M,N,Q分別是棱D1C1,A1D1,BC的中點(diǎn),點(diǎn)P在對(duì)角線BD1上,給出以下命題:
①當(dāng)P在BD1上運(yùn)動(dòng)時(shí),恒有MN∥面APC;
②若A,P,M三點(diǎn)共線,則$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$;
③若$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$,則C1Q∥面APC;
④若過(guò)點(diǎn)P且與正方體的十二條棱所成的角都相等的直線有m條;過(guò)點(diǎn)P且與直線AB1和A1C1所成的角都為60°的直線有n條,則m+n=7.
其中正確命題的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.2x-1的值是否可以同時(shí)大于x-5和3x+1的值?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=x2+ax-lnx+1(a∈R),g(x)=x2-1
(Ⅰ)當(dāng)a=-1時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)m(x)=f(x)-g(x),當(dāng)x∈(0,e2]時(shí),是否存在實(shí)數(shù)a,使得函數(shù)y=m(x)的最小值為4?若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=ax2-(2a-1)x-lnx,其中a∈R.
(Ⅰ)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a<0時(shí),求函數(shù)f(x)在區(qū)間[$\frac{1}{2}$,1]上的最小值;
(Ⅲ)記函數(shù)y=f(x)的圖象為曲線C,設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上不同的兩點(diǎn),點(diǎn)M為線段AB的中點(diǎn),過(guò)點(diǎn)M作x軸的垂線交曲線C于點(diǎn)N,試判斷曲線C在N處的切線是否平行于直線AB?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知f(x)=|2x-3|+ax-6(a是常數(shù),a∈R)
(Ⅰ)當(dāng)a=1時(shí),求不等式f(x)≥0的解集;
(Ⅱ)如果函數(shù)y=f(x)恰有兩個(gè)不同的零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)函數(shù)f(x)=aex-x-1,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈(0,+∞)時(shí),f(x)>0恒成立,求a的取值范圍;
(Ⅲ)求證:當(dāng)x∈(0,+∞)時(shí),ln$\frac{{e}^{x}-1}{x}$>$\frac{x}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)a,b,c∈R+,且a+b+c=1,則$\frac{1}{{a}^{2}}$$+\frac{1}{^{2}}$$+\frac{1}{{c}^{2}}$的最小值是27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知運(yùn)算○按下面的方式定義:a○b=2a-ab,若整數(shù)x,y使(2○x)○y=400成立,則在所有滿足條件的整數(shù)對(duì)(x,y)中,x+y的最大值為205.

查看答案和解析>>

同步練習(xí)冊(cè)答案