分析 (Ⅰ)當(dāng)a=1時(shí)轉(zhuǎn)化不等式f(x)≥0,去掉絕對(duì)值,然后求解不等式的解集即可;
(Ⅱ)函數(shù)y=f(x)恰有兩個(gè)不同的零點(diǎn),令f(x)=0,構(gòu)造函數(shù)y=|2x-3|,y=-ax+6,利用函數(shù)的圖象推出a的取值范圍.
解答 解:(Ⅰ)當(dāng)a=1時(shí),f(x)=|2x-3|+x-6=$\left\{\begin{array}{l}{3x-9,x≥\frac{3}{2}}\\{-3-x,x<\frac{3}{2}}\end{array}\right.$,
∴f(x)=|2x-3|+x-6≥0:化為$\left\{\begin{array}{l}{3x-9≥0}\\{x≥\frac{3}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{-x-3≥0}\\{x<\frac{3}{2}}\end{array}\right.$,
解得x≥3或x≤-3.
則解集為{x|x≥3或x≤-3}.
(Ⅱ)由f(x)=0得,|2x-3|=-ax+6.
令y=|2x-3|,y=-ax+6,作出它們的圖象,
可以知道,當(dāng)-2<a<2時(shí),
這兩個(gè)函數(shù)的圖象有兩個(gè)不同的交點(diǎn),
所以,當(dāng)-2<a<2時(shí),函數(shù)y=f(x)有兩個(gè)不同的零點(diǎn).
點(diǎn)評(píng) 本題考查絕對(duì)值不等式的解法,函數(shù)的零點(diǎn)的個(gè)數(shù)問(wèn)題的解法,考查數(shù)形結(jié)合思想和計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({0,\frac{1}{e}}]$ | B. | $({0,\frac{3}{4}}]$ | C. | $[{\frac{1}{e},1})$ | D. | $[{\frac{1}{e},\frac{3}{4}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 11個(gè) | B. | 10個(gè) | C. | 22個(gè) | D. | 20個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com