如圖所示,長方體ABCD-A1B1C1D1中,BB1=BC=1,AB=2,連接A1B,過B1作B1E⊥A1B,交AB于點E.

(1)

求證:D1B⊥平面B1EC

(2)

求二面角的B1-EC-B正切值

答案:
解析:

(1)

  ∵A1Dl⊥平面A1ABB1,

  ∴A1D1⊥B1E

  又B1E⊥A1B,

  ∴B1E⊥平面A1D1B.

  ∴D1B⊥B1E.

  同理EC⊥D1B.

  ∴D1B⊥平面B1EC

(2)


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖所示的長方體ABCD-A1B1C1D1中AB=BB1且BC=2AB,E,F(xiàn)分別是BC1,A1D1的中點,則異面直線BE與DF所成的角是
90°
90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,以AB=4cm,BC=3cm的長方形ABCD為底面的長方體被平面斜著截斷的幾何體,EFGH是它的截面.當AE=5cm,BF=8cm,CG=12cm時,試回答下列問題:
(1)求DH的長;
(2)求這個幾何體的體積;
(3)截面四邊形EFGH是什么圖形?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•泉州模擬)某工廠欲加工一件藝術品,需要用到三棱錐形狀的坯材,工人將如圖所示的長方體ABCD-EFGH材料切割成三棱錐H-ACF.

(Ⅰ)若點M,N,K分別是棱HA,HC,HF的中點,點G是NK上的任意一點,求證:MG∥平面ACF;
(Ⅱ)已知原長方體材料中,AB=2m,AD=3m,DH=1m,根據(jù)藝術品加工需要,工程師必須求出該三棱錐的高.
(i) 甲工程師先求出AH所在直線與平面ACF所成的角θ,再根據(jù)公式h=AH•sinθ求出三棱錐H-ACF的高.請你根據(jù)甲工程師的思路,求該三棱錐的高.
(ii)乙工程師設計了一個求三棱錐的高度的程序,其框圖如圖所示,則運行該程序時乙工程師應輸入的t的值是多少?(請直接寫出t的值,不要求寫出演算或推證的過程).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,長方體ABCD-A1B1C1D1中,P是線段AC上任意一點.
(1)判斷直線B1P與平面A1C1D的位置關系并證明;
(2)若AB=BC,E是AB中點,二面角A1-DC1-D1的余弦值是
10
5
,求直線B1E與平面A1C1D所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆江蘇省淮安七校高二上學期期中考試理科數(shù)學 題型:填空題

如圖所示的長方體中,AB=AD=,=,則二面角的大小為_______;

 

 

 

查看答案和解析>>

同步練習冊答案