考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)在x=1和x=2時(shí)取得極值,得到函數(shù)的導(dǎo)函數(shù)在這兩個(gè)點(diǎn)導(dǎo)函數(shù)等于0,解關(guān)于a,b的方程,得到結(jié)果.
(Ⅱ)對(duì)函數(shù)求導(dǎo),在所給的區(qū)間上寫出各個(gè)區(qū)間上的導(dǎo)函數(shù)的符合和各個(gè)點(diǎn)的值,比較兩個(gè)端點(diǎn)處函數(shù)的值和極值,求得最值.
解答:
解:(Ⅰ)f′(x)=2ax+
+1,由
⇒
,
(Ⅱ)f(x)=-
x
2+x-
lnx,f′(x)=
,
∴函數(shù)f(x)在區(qū)間[
,1]遞減,在(1,2]遞增,在(2,e
2]遞減,
又f(1)=
>0,f(e
2)=-
-
+e
2<0,
故f(x)在區(qū)間[
,e
2]的最小值是f(e
2)=-
-
+e
2.
點(diǎn)評(píng):本題考查函數(shù)的極值和最值,解題的關(guān)鍵是正確應(yīng)用在某一點(diǎn)有極值點(diǎn)條件,它使得導(dǎo)函數(shù)在這里等于0.