設(shè)集合S={x|x>-2},T={x|-4≤x≤1},則S∩T=
 
考點:交集及其運算
專題:集合
分析:利用交集的定義示求解.
解答: 解:∵集合S={x|x>-2},T={x|-4≤x≤1},
∴S∩T={x|-2<x≤1}.
故答案為:{x|-2<x≤1}.
點評:本題考查交集的求法,是基礎(chǔ)題,解題時要認真審題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

A={x|x2-2x-3<0},B={x|x2-4>0},C={x|x2+2mx-3m2<0}.
(1)若(A∩B)⊆C,求實數(shù)m的取值范圍;
(2)若C⊆(A∩B),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)全集為R,A={x|3≤x<7},B={x|2<x<10}
(1)求∁R(A∪B)及(∁RA)∩B;
(2)若C={x|x<a}滿足A?C,求a取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,若a1=-3,ak+1=
3
2
,Sk=-12,則正整數(shù)k=( 。
A、10B、11C、12D、13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若{an}為等差數(shù)列,Sn是其前n項和,且S15=10π,則tana8的值為(  )
A、
3
B、-
3
C、±
3
D、-
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={(x,y)|y=x2+4x+6},B={(x,y)|y=2x+a},問:
(1)a為何值時,集合A∩B有兩個元素;
(2)a為何值時,集合A∩B至多有一個元素.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)當a=1時,求A∪B;
(2)若a>0,且A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)存在反函數(shù)x=φ(y),且y′≠0,y″≠0,求其反函數(shù)的二階導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x
(1)寫出函數(shù)f(x)的反函數(shù)g(x)及定義域;
(2)借助計算器用二分法求g(x)=4-x的近似解(精確度0.1)

查看答案和解析>>

同步練習冊答案