10.直線$\sqrt{3}$x-y+a=0(a為常數(shù))的傾斜角為( 。
A.30°B.60°C.150°D.120°

分析 由直線的傾斜角α與斜率k的關(guān)系,可以求出α的值.

解答 解:設(shè)直線$\sqrt{3}$x-y+a=0的傾斜角是α,
則直線的方程可化為y=$\sqrt{3}$x+a,
直線的斜率k=tanα=$\sqrt{3}$,
∵0°≤α<180°,
∴α=60°.
故選:B.

點評 本題考查了利用直線的斜率求傾斜角的問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.用反證法證明命題:“若a,b∈Z,ab能被5整除,則a,b中至少有一個能被5整除”,那么假設(shè)的內(nèi)容是( 。
A.a,b都能被5整除B.a,b都不能被5整除
C.a,b有一個能被5整除D.a,b有一個不能被5整除

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若|$\frac{x}{x+1}$|>$\frac{x}{x+1}$則實數(shù)x的取值范圍是( 。
A.(-1,0)B.[-1,0]C.(-∞,-1)∪(0,+∞)D.(-∞,-1]∪[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=$\frac{4}{x^2}$+3x(x>0)取得最小值時,x的值是( 。
A.$\frac{1}{3}\root{3}{36}$B.$\frac{2}{3}\root{3}{9}$C.$\frac{1}{3}\sqrt{36}$D.$\frac{2}{3}\sqrt{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知ξ是離散型隨機(jī)變量,P(X=1)=$\frac{2}{3}$,P(X=a)=$\frac{1}{3}$且E(X)=$\frac{4}{3}$,則D(2X-1)等于$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知α,β是兩個不同的平面,下列四個條件中能推出α∥β的是(  )
①存在一條直線m,m⊥α,m⊥β;
②存在一個平面γ,γ⊥α,γ⊥β;
③存在兩條平行直線m,n,m?α,n?β,m∥β,n∥α;
④存在兩條異面直線m,n,m?α,n?β,m∥β,n∥α.
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.甲、乙兩臺自動車床生產(chǎn)同種標(biāo)準(zhǔn)件,ξ表示甲機(jī)床生產(chǎn)1000件產(chǎn)品中的次品數(shù),η表示乙機(jī)床生產(chǎn)1000件產(chǎn)品中的次品數(shù),經(jīng)過一段時間的測試,ξ與η的分布列分別為:
ζ0123
P0.70.10.10.1
η0123
p0.50.30.20
據(jù)此判定(  )
A.甲比乙質(zhì)量好B.乙比甲質(zhì)量好C.甲與乙質(zhì)量相同D.無法判定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.實驗杯足球賽采用七人制淘汰賽規(guī)則,某場比賽中一班與二班在常規(guī)時間內(nèi)戰(zhàn)平,直接進(jìn)入點球決勝環(huán)節(jié),在點球決勝環(huán)節(jié)中,雙方首先輪流罰點球三輪,罰中更多點球的球隊獲勝;若雙方在三輪罰球中未分勝負(fù),則需要進(jìn)行一對一的點球決勝,即雙方各派出一名隊員罰點球,直至分出勝負(fù);在前三輪罰球中,若某一時刻勝負(fù)已分,尚未出場的隊員無需出場罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學(xué)無需出場),由于一班同學(xué)平時踢球熱情較高,每位隊員罰點球的命中率都能達(dá)到0.8,而二班隊員的點球命中率只有0.5,比賽時通過抽簽決定一班在每一輪都先罰球.
(1)定義事件A為“一班第三位同學(xué)沒能出場罰球”,求事件A發(fā)生的概率;
(2)若兩隊在前三輪點球結(jié)束后打平,則進(jìn)入一對一點球決勝,一對一點球決勝由沒有在之前點球大戰(zhàn)中出場過的隊員主罰點球,若在一對一點球決勝的某一輪中,某隊隊員射入點球且另一隊隊員未能射入,則比賽結(jié)束;若兩名隊員均射入或者均射失點球,則進(jìn)行下一輪比賽.若直至雙方場上每名隊員都已經(jīng)出場罰球,則比賽亦結(jié)束,雙方用過抽簽決定勝負(fù),以隨機(jī)變量X記錄雙方進(jìn)行一對一點球決勝的輪數(shù),求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.調(diào)查某醫(yī)院某段時間內(nèi)嬰兒出生的時間與性別的關(guān)系,得到下面的數(shù)據(jù)表:
晚上白天合計
男嬰243155
女嬰82634
合計325789
你認(rèn)為嬰兒的性別與出生時間有關(guān)系的把握為( 。
A.80%B.90%C.95%D.99%

查看答案和解析>>

同步練習(xí)冊答案