(12分)如圖所示,在三棱柱中,點為棱的中點.

(1)求證:.
(2)若三棱柱為直三棱柱,且各棱長均為,求異面直線所成的角的余弦值.

(1)證明:連結(jié),交于點,連結(jié),證明
推出;
(2)。

解析試題分析:(1)證明:連結(jié),交于點,連結(jié)
 .........................1分

 ...............................3分

 ..................5分
(2)解:
是異面直線所成的角 ..................6分
棱柱為直棱柱,且棱長均為
 ...............8分
 .....................9分
的中點,連接,則  ................10分
 ...................11分
 .........................12分
考點:本題主要考查立體幾何中線面平行、直線與直線所成的角。
點評:典型題,立體幾何中線面關(guān)系與線線關(guān)系的相互轉(zhuǎn)化是高考重點考查內(nèi)容,角的計算問題,要注意“一作、二證、三計算”。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
如圖,在四棱錐中,,,,的中點.

求證:(1)∥平面;
(2)⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分6分)
如圖,在邊長為的菱形中,,,、分別是的中點.

(1)求證: 面
(2)求證:平面⊥平面;
(3)求與平面所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,為圓的直徑,點、在圓上,,矩形所在的平面與圓所在的平面互相垂直.已知,

(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的大;
(Ⅲ)當(dāng)的長為何值時,平面與平面所成的銳二面角的大小為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
如圖4,已知四棱錐,底面是正方形,,點的中點,點的中點,連接,.

(1)求證:
(2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,在上,過點//的位置(),
使得.

(I)求證:  (II)試問:當(dāng)點上移動時,二面角的平面角的余弦值是否為定值?若是,求出定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分l2分) 如圖,在多面體ABCDEF中,ABCD為菱形,ABC=60,EC面ABCD,F(xiàn)A面ABCD,G為BF的中點,若EG//面ABCD.

(I)求證:EG面ABF;
(Ⅱ)若AF=AB,求二面角B—EF—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,正三棱柱ABC—A1B1C1中,D是BC的中點,AA1=AB=1.

(I)求證:A1C//平面AB1D;
(II)求二面角B—AB1—D的大;
(III)求點C到平面AB1D的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)如圖,等邊與直角梯形垂直,,,,.若分別為的中點.(1)求的值; (2)求面與面所成的二面角大小.

查看答案和解析>>

同步練習(xí)冊答案