10.在四棱錐P-ABCD中,$∠DBA=\frac{π}{2}$,$AB\underline{\underline∥}CD$,△PAB和△PBD都是邊長為2的等邊三角形,設(shè)P在底面ABCD的射影為O.
(1)求證:O是AD中點;
(2)證明:BC⊥PB;
(3)求二面角A-PB-C的余弦值.

分析 (1)證明PO⊥底面ABCD,說明點O為△ABD的外心,然后判斷點O為AD中點.
(2)證明PO⊥面ABCD,推出BC⊥PO,證明CB⊥BO,BC⊥PO,證明CB⊥面PBO,推出BC⊥PB.
(3)以點O為原點,以O(shè)B,OD,OP所在射線為x軸,y軸,z軸建系,求出相關(guān)點的坐標(biāo),平面PAB的法向量,平面PBC的法向量,利用空間向量的數(shù)量積求解所以該二面角的余弦值即可.

解答 解:(1)證明:∵△PAB和△PBD都是等邊三角形,
∴PA=PB=PD,
又∵PO⊥底面ABCD,
∴OA=OB=OD,
則點O為△ABD的外心,又因為△ABD是直角三角形,
∴點O為AD中點.
(2)證明:由(1)知,點P在底面的射影為點O,點O為AD中點,
于是PO⊥面ABCD,
∴BC⊥PO,
∵在Rt△ABD中,BD=BA,OB⊥AD,
∴$∠DBO=∠ODB=\frac{π}{4}$,
又$AB\underline{\underline∥}CD$,∴$∠CBD=\frac{π}{4}$,
從而$∠CBO=\frac{π}{2}$即CB⊥BO,
由BC⊥PO,CB⊥BO得CB⊥面PBO,
∴BC⊥PB.
(3)以點O為原點,以O(shè)B,OD,OP所在射線為x軸,y軸,z軸建系如圖,

∵AB=2,則O(0,0,0),$A({0,-\sqrt{2},0})$,$B({\sqrt{2},O,O})$,$C({\sqrt{2},2\sqrt{2},0})$,$D({0,\sqrt{2},0})$,$P({0,0,\sqrt{2}})$,$\overrightarrow{BA}=({-\sqrt{2},-\sqrt{2},0})$,$\overrightarrow{BP}=({-\sqrt{2},0,\sqrt{2}})$,$\overrightarrow{BC}=({0,2\sqrt{2},0})$,
設(shè)面PAB的法向量為$\overrightarrow n=({x,y,z})$,則$\overrightarrow n•\overrightarrow{BA}=0$,$\overrightarrow n•\overrightarrow{BP}=0$,得$-\sqrt{2}x-\sqrt{2}y=0$,$-\sqrt{2}x+\sqrt{2}z=0$,
取x=1,得y=-1,z=1,
故$\overrightarrow n=({1,-1,1})$.
設(shè)面PBC的法向量為$\overrightarrow m=({r,s,t})$,則$\overrightarrow m•\overrightarrow{BC}=0$,$\overrightarrow m•\overrightarrow{BP}=0$,得s=0,$-\sqrt{2}r+\sqrt{2}t=0$,
取r=1,則t=1,故$\overrightarrow m=({1,0,1})$,
于是$cos<\overrightarrow m,\overrightarrow n>=\frac{\overrightarrow m•\overrightarrow n}{{|{\overrightarrow m}||{\overrightarrow n}|}}=\frac{{\sqrt{6}}}{3}$,
由圖觀察知A-PB-C為鈍二面角,
所以該二面角的余弦值為$-\frac{{\sqrt{6}}}{3}$.

點評 本題考查直線與平面垂直的判定定理以及性質(zhì)定理的應(yīng)用,二面角的平面角的求法,考查空間想象能力以及邏輯推理能力計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$,O為坐標(biāo)原點,M為長軸的一個端點,若在橢圓上存在點N,使ON⊥MN,則離心率e的取值范圍為( 。
A.$(\frac{{\sqrt{2}}}{2},1)$B.$(0,\frac{{\sqrt{2}}}{2})$C.$(\frac{{\sqrt{3}}}{2},1)$D.$(0,\frac{{\sqrt{3}}}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=axex-(a-1)(x+1)2(其中a∈R,e為自然對數(shù)的底數(shù),e=2.718128…).
(1)當(dāng)a=-1時,求f(x)的單調(diào)區(qū)間;
(2)若f(x)僅有一個極值點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.執(zhí)行如圖所示的程序框圖,若輸入p=2017,則輸出i的值為( 。
A.335B.336C.337D.338

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.點M(3,2)到拋物線C:y=ax2(a>0)準(zhǔn)線的距離為4,F(xiàn)為拋物線的焦點,點N(l,l),當(dāng)點P在直線l:x-y=2上運動時,$\frac{|PN|-1}{|PF|}$的最小值為( 。
A.$\frac{3-2\sqrt{2}}{8}$B.$\frac{2-\sqrt{2}}{4}$C.$\frac{5-2\sqrt{2}}{8}$D.$\frac{5-2\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,CB⊥平面PAB,AD∥BC,且PA=PB=AB=BC=2AD=2.
(Ⅰ)求證:平面DPC⊥平面BPC;
(Ⅱ)求二面角C-PD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在銳角△ABC中,$\overrightarrow{CM}$=3$\overrightarrow{MB}$,$\overrightarrow{AM}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,則$\frac{x}{y}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.工人在懸掛如圖所示的一個正六邊形裝飾品時,需要固定六個位置上的螺絲,首先隨意擰緊一個螺絲,接著擰緊距離它最遠(yuǎn)的第二個螺絲,再隨意擰緊第三個螺絲,接著擰緊距離第三個螺絲最遠(yuǎn)的第四個螺絲,第五個和第六個以此類推,則不同的固定方式有48種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線被圓(x-c)2+y2=4a2截得弦長為2b(其中c為雙曲線的半焦距),則該雙曲線的離心率為(  )
A.$\sqrt{6}$B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

同步練習(xí)冊答案