已知函數(shù)f(x)=
(-1)nsin
πx
2
+2n,x∈[2n,2n+1)
(-1)n+1sin
πx
2
+2n+2,x∈[2n+1,2n+2)
(n∈N),則f(1)-f(2)+f(3)-f(4)+…+f(2013)-f(2014)+f(2015)=
 
考點(diǎn):函數(shù)的值
專題:三角函數(shù)的求值
分析:根據(jù)解析式依次求出f(1)、f(2)、f(3)、f(4)的值,歸納出f(n)=n,f(1)-f(2)=-1,f(3)-f(4)=-1,代入式子求值即可.
解答: 解:由題意得,f(x)=
(-1)nsin
πx
2
+2n,x∈[2n,2n+1)
(-1)n+1sin
πx
2
+2n+2,x∈[2n+1,2n+2)
(n∈N),
所以f(1)=(-1)1sin
π
2
+2×0+2
=1,f(2)=(-1)1sin
2
+2×1
=2,
f(3)=(-1)2sin
2
+2×1+2
=3,f(4)=(-1)2sin
2
+2×2
=4,
依此類推得,f(n)=n,f(1)-f(2)=-1,f(3)-f(4)=-1,…
所以f(1)-f(2)+f(3)-f(4)+…+f(2013)-f(2014)+f(2015)
=-1×1007+2015=1008,
故答案為:1008.
點(diǎn)評(píng):本題考查分段函數(shù)及應(yīng)用,考查數(shù)列的求和,三角函數(shù)的求值,考查基本的運(yùn)算能力和探究能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)=xa的圖象過(guò)點(diǎn)(
1
27
,
1
3
),則(  )
A、f(
2
3
)<f(
4
5
B、f(
2
3
)=f(
4
5
C、f(
2
3
)>f(
4
5
D、f(
2
3
),f(
4
5
)的大小不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
(x+1)2+cosx-sinx
x2+cosx+1
在區(qū)間[-1,1]上的最大值為M最小值為N,則M+N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn=2an-1,數(shù)列{bn}滿足b1=3,bn+1=an+bn(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)是否存在非零實(shí)數(shù)k,使得數(shù)列{kTn+k2an}為等差數(shù)列,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=-56,an+1=an+12(n≥1),則它的前( 。╉(xiàng)的和最。
A、4B、5C、6D、5或6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x-1
x+1
,-3≤x≤3,試判斷f(x)的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
8
x2-4x+5
的值域是(  )
A、(0,8]
B、(0,+∞)
C、[8,+∞)
D、(-∞,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓錐曲線
x=3cosβ
y=2
2
sinθ
(θ是參數(shù))和定點(diǎn)A(0,33),F(xiàn)1、F2是圓錐曲線的左、右焦點(diǎn).求經(jīng)過(guò)點(diǎn)F2且垂直地于直線AF1的直線l的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

高三(一)班要安排畢業(yè)晚會(huì)的4個(gè)音樂節(jié)目,2個(gè)舞蹈節(jié)目和1個(gè)曲藝節(jié)目的演出順序,要求兩個(gè)舞蹈節(jié)目不連排,則不同排法的種數(shù)有
 

查看答案和解析>>

同步練習(xí)冊(cè)答案