【題目】已知直角梯形中,是邊長為2的等邊三角形,.沿將折起,使至處,且;然后再將沿折起,使至處,且面面,和在面的同側(cè).
(Ⅰ) 求證:平面;
(Ⅱ) 求平面與平面所構(gòu)成的銳二面角的余弦值.
【答案】(Ⅰ) 詳見解析;(Ⅱ ) 平面與平面所構(gòu)成的銳二面角的余弦值為.
【解析】
試題分析:(Ⅰ) 在直角梯形ABCD中,由平面幾何知識,又,可證得平面;(Ⅱ ) 建立空間直角坐標(biāo)系,利用法向量可求出二面角的余弦值.
試題解析:(Ⅰ)證明:在直角梯形ABCD中,可算得
根據(jù)勾股定理可得,即:,又,平面;
(Ⅱ) 以C為原點,CE為y軸,CB為z軸建立空間直角坐標(biāo)系,如圖,則,,,,作,因為面面,易知,,且,
從平面圖形中可知:,易知面CDE的法向量為
設(shè)面PAD的法向量為,且.
解得
故所求平面與平面所構(gòu)成的銳二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.在正方體中,設(shè)BC的中點為M,GH的中點為N.
(1)請將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點處(不需說明理由).
(2)判斷平面BEG與平面ACH的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列給出的輸入語句、輸出語句和賦值語句:
(1)輸出語句INPUT ,b,c
(2)輸入語句INPUT =3
(3)賦值語句3=A
(4)賦值語句A=B=C
則其中正確的個數(shù)是( )
(A)0 (B)1 (C)2 (D)3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,用符號表示不超過的最大整數(shù),若函數(shù)有且僅有3個零點,則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(0,1),(3+2,0),(3-2,0)在圓C上.
(1)求圓C的方程.
(2)若圓C與直線x-y+a=0交于A,B兩點,且OA⊥OB,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ (x≠0,a∈R).
(1)判斷函數(shù)f(x)的奇偶性;
(2)若f(x)在區(qū)間[2,+∞)上是增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在上的最大值;
(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;
(3)當(dāng)時,函數(shù)的圖象與軸交于兩點且,又是的導(dǎo)函數(shù).若正常數(shù)滿足條件.證明:<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某市主辦的科技知識競賽的學(xué)生成績中隨機選取了40名學(xué)生的成績作為樣本,已知這40名學(xué)生的成績?nèi)吭?0分至100分之間,現(xiàn)將成績按如下方式分成6組,第一組;第二組;…;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.
(1)求成績在區(qū)間內(nèi)的學(xué)生人數(shù);
(2)從成績大于等于80分的學(xué)生中隨機選取2名,求至少有1名學(xué)生的成績在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求不等式的解集;
(2)當(dāng)時,若對任意互不相等的實數(shù),都有成立,求實數(shù)的取值范圍;
(3)判斷函數(shù)在上的零點的個數(shù),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com