【題目】已知函數(shù)其中為常數(shù).

(1)當函數(shù)的圖象在點處的切線的斜率為1時,求函數(shù)上的最小值; (2)若函數(shù)在區(qū)間上既有極大值又有極小值,求的取值范圍.

【答案】(1)f(x)minf(2)=1-3ln 2.(2)

【解析】試題分析】(1)依據(jù)題設條件,借助導數(shù)的幾何意義先求參數(shù)的值,再運用導數(shù)與函數(shù)單調(diào)性之間的關系求解;(2)利用導函數(shù)的零點與函數(shù)極值點之間的關系建立不等式組分析求解:

(1)f′(x)=a (x>0),由題意可知,f=1,解得a=1.

f(x)=x-3ln x,∴f′(x)=,

根據(jù)題意由f′(x)=0,得x=2.

于是可得下表:

x

2

(2,3)

3

f′(x)

0

f(x)

1-3ln 2

f(x)minf(2)=1-3ln 2.

(2)f′(x)=a (x>0),

由題意可得方程ax2-3x+2=0有兩個不等的正實根,不妨設這兩個根為x1,x2,并令h(x)=ax2-3x+2,

解得0<a<.故a的取值范圍為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 ,直線 .

(Ⅰ)求直線被圓所截得的弦長最短時的值及最短弦長;

(Ⅱ)已知坐標軸上點和點滿足:存在圓上的兩點,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下莖葉圖記錄了甲,乙兩組各四名同學的植樹棵數(shù).乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以表示.

1)如果,求乙組同學植樹棵數(shù)的平均數(shù)和方差;

2)如果,分別從甲,乙兩組中隨機選取一名同學,求這兩名同學的植樹總棵數(shù)為19的概率.(注:方差,其中, ,……的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓.

(1)若直線過定點,且與圓相切,求的方程;

(2)若圓的半徑為,圓心在直線上,且與圓外切,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“局部奇函數(shù)”.

為定義在上的“局部奇函數(shù)”;

曲線軸交于不同的兩點;

為假命題, 為真命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某軟件公司新開發(fā)一款學習軟件,該軟件把學科知識設計為由易到難共12關的闖關游戲.為了激發(fā)闖關熱情,每闖過一關都獎勵若干慧幣(一種網(wǎng)絡虛擬幣).該軟件提供了三種獎勵方案:第一種,每闖過一關獎勵40慧幣;第二種,闖過第一關獎勵40慧幣,以后每一關比前一關多獎勵4慧幣;第三種,闖過第一關獎勵慧幣,以后每一關比前一關獎勵翻一番(即增加1倍).游戲規(guī)定:闖關者須于闖關前任選一種獎勵方案.

(1)設闖過關后三種獎勵方案獲得的慧幣總數(shù)依次為,試求出的表達式;

(2)如果你是一名闖關者,為了得到更多的慧幣,你應如何選擇獎勵方案?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次水下考古活動中,某一潛水員需潛水米到水底進行考古作業(yè).其用氧量包含一下三個方面:下潛平均速度為/分鐘,每分鐘用氧量為升;水底作業(yè)時間范圍是最少分鐘最多分鐘,每分鐘用氧量為升;返回水面時,平均速度為/分鐘,每分鐘用氧量為.潛水員在此次考古活動中的總用氧量為.

1)如果水底作業(yè)時間是分鐘,將表示為的函數(shù);

2)若,水底作業(yè)時間為分鐘,求總用氧量的取值范圍;

3)若潛水員攜帶氧氣升,請問潛水員最多在水下多少分鐘(結(jié)果取整數(shù))?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(文科)(本小題滿分12分)某高校從參加今年自主招生考試的學生中隨機抽取容量為50的學生成績樣本,得頻率分布表如下:

組號

分組

頻數(shù)

頻率

第一組

[230,235)

8

0.16

第二組

[235,240)

0.24

第三組

[240,245)

15

第四組

[245,250)

10

0.20

第五組

[250,255]

5

0.10

50

1.00

1)寫出表中①②位置的數(shù)據(jù);

2)為了選拔出更優(yōu)秀的學生,高校決定在第三、四、五組中用分層抽樣法抽取6名學生進行第二輪考核,分別求第三、四、五各組參加考核人數(shù);

3)在(2)的前提下,高校決定在這6名學生中錄取2名學生,求2人中至少有1名是第四組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設銳角三角形的內(nèi)角的對邊分別為,且.

(1)求的大;

(2)求的取值范圍.

查看答案和解析>>

同步練習冊答案