5.在正方體ABCD-A1B1C1D1中,O為正方形ABCD的中心,則D1O與平面ADD1A1所成的角的余弦值為$\frac{\sqrt{30}}{6}$.

分析 以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,利用向量法能求出D1O與平面ADD1A1所成的角的余弦值.

解答 解:以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,
設正方體ABCD-A1B1C1D1中棱長為2,
則O(1,1,0),D1(0,0,2),$\overrightarrow{{D}_{1}O}$=(1,1,-2),
平面ADD1A1的法向量$\overrightarrow{n}$=(0,1,0),
設D1O與平面ADD1A1所成的角為θ,
則sinθ=|cos<$\overrightarrow{{D}_{1}O},\overrightarrow{n}$>|=$\frac{|\overrightarrow{{D}_{1}O}•\overrightarrow{n}|}{|\overrightarrow{{D}_{1}O}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{6}}$,
cosθ=$\sqrt{1-(\frac{1}{\sqrt{6}})^{2}}$=$\frac{\sqrt{30}}{6}$.
∴D1O與平面ADD1A1所成的角的余弦值為$\frac{\sqrt{30}}{6}$.
故答案為:$\frac{\sqrt{30}}{6}$.

點評 本題考查線面角的余弦值的求法,是基礎題,解題時要認真審題,注意向量法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知f(x)=ax2-(a+2)x+ln x.
(1)a=1時,求y=f(x)在(1,f(1))處的切線方程.
(2)當a>0時,若f(x)在區(qū)間[1,e]上最小值為-2,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)=atanx-bsinx+1,且$f({\frac{π}{4}})=7$,則$f({-\frac{π}{4}})$=-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.寫出下列命題的否定并判斷真假:
(1)所有自然數(shù)的平方是正數(shù);
(2)任何實數(shù)x都是方程5x-12=0的根;
(3)?x∈R,x2-3x+3>0;     
(4)有些質數(shù)不是奇數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.假設關于某設備的使用年限x(年)和所支出的維修費用y(萬元)有如表的統(tǒng)計資料:
使用年限x(年)23456
維修費用y(萬元)2.23.85.56.57.0
若由資料可知y對x呈線性相關關系,試求:
(1)線性回歸直線方程;
(2)根據(jù)回歸直線方程,估計使用年限為12年時,維修費用是多少?
$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=90;$\sum_{i=1}^{5}$xiyi=112.3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知曲線f(x)=x3-2x2+1
(1)求在點P(1,0)處的切線l1的方程;
(2)求經過點Q(2,1)且與已知曲線f(x)相切的直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.過點(1,-2)的拋物線的標準方程是y2=4x或x2=-$\frac{1}{2}$y.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知曲線y=3cos(2x-$\frac{π}{3}$)+1的對稱中心的坐標構成集合A,則下列說法正確的是(  )
A.($\frac{11π}{12}$,0)∈AB.(-$\frac{7π}{12}$,1)∉A
C.{(-$\frac{7π}{12}$,1),($\frac{17π}{12}$,1)}⊆AD.{($\frac{π}{2}$,1),($\frac{17π}{12}$,1)}⊆A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=x3-$\frac{1}{2}$x-2x+c(c為常數(shù)),若x∈[-1,2]時,f(x)<c2恒成立,求c的范圍.

查看答案和解析>>

同步練習冊答案