【題目】已知拋物線y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)F的直線交拋物線于A,B兩點(diǎn). (Ⅰ)若 ,求直線AB的斜率;
(Ⅱ)設(shè)點(diǎn)M在線段AB上運(yùn)動(dòng),原點(diǎn)O關(guān)于點(diǎn)M的對(duì)稱(chēng)點(diǎn)為C,求四邊形OACB面積的最小值.
【答案】(Ⅰ)解:依題意F(1,0),設(shè)直線AB方程為x=my+1 將直線AB的方程與拋物線的方程聯(lián)立,消去x得y2﹣4my﹣4=0.
設(shè)A(x1 , y1),B(x2 , y2),所以 y1+y2=4m,y1y2=﹣4. ①
因?yàn)? ,
所以 y1=﹣2y2 . ②
聯(lián)立①和②,消去y1 , y2 , 得 .
所以直線AB的斜率是 .
(Ⅱ)解:由點(diǎn)C與原點(diǎn)O關(guān)于點(diǎn)M對(duì)稱(chēng),得M是線段OC的中點(diǎn),
從而點(diǎn)O與點(diǎn)C到直線AB的距離相等,
所以四邊形OACB的面積等于2S△AOB .
因?yàn)?
= ,
所以 m=0時(shí),四邊形OACB的面積最小,最小值是4.
【解析】(Ⅰ)依題意F(1,0),設(shè)直線AB方程為x=my+1.將直線AB的方程與拋物線的方程聯(lián)立,得y2﹣4my﹣4=0.由此能夠求出直線AB的斜率.(Ⅱ)由點(diǎn)C與原點(diǎn)O關(guān)于點(diǎn)M對(duì)稱(chēng),得M是線段OC的中點(diǎn),從而點(diǎn)O與點(diǎn)C到直線AB的距離相等,所以四邊形OACB的面積等于2S△AOB . 由此能求出四邊形OACB的面積最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.則實(shí)數(shù)m的取值范圍為( )
A.[﹣2,2]
B.[2,+∞)
C.[0,+∞)
D.(﹣∞,﹣2]∪[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱柱中,是的中點(diǎn),與交于點(diǎn),在線段上,且.
(Ⅰ)求證:平面;
(Ⅱ)若,,,三棱錐的體積為,求三棱柱的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合M是R的子集,如果點(diǎn)x0∈R滿足:a>0,x∈M,0<|x﹣x0|<a,稱(chēng)x0為集合M的聚點(diǎn).則下列集合中以1為聚點(diǎn)的有( ) ① ;
② ;
③Z;
④{y|y=2x}.
A.①④
B.②③
C.①②
D.①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三邊長(zhǎng)為a,b,c,則下列命題中真命題是( )
A.“a2+b2>c2”是“△ABC為銳角三角形”的充要條件
B.“a2+b2<c2”是“△ABC為鈍角三角形”的必要不充分條件
C.“a3+b3=c3”是“△ABC為銳角三角形”的既不充分也不必要條件
D.“ + = ”是“△ABC為鈍角三角形”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)是二次函數(shù),頂點(diǎn)為(﹣1,﹣4),且與x軸的交點(diǎn)為(1,0).
(1)求出f(x)的解析式;
(2)求y=f(x)在區(qū)間[﹣2,2]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一盒中裝有各色球12只,其中5個(gè)紅球,4個(gè)黑球,2個(gè)白球,1個(gè)綠球;從中隨機(jī)取出1球.求:
(1)取出的1球是紅球或黑球的概率;
(2)取出的1球是紅球或黑球或白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017衡陽(yáng)第二次聯(lián)考】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)如果對(duì)于任意的, 恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù), ,過(guò)點(diǎn)作函數(shù)的圖象的所有切線,令各切點(diǎn)的橫坐標(biāo)按從小到大構(gòu)成數(shù)列,求數(shù)列的所有項(xiàng)之和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠的某產(chǎn)品產(chǎn)量與單位成本的資料如表所示:
產(chǎn)量x千件 | 2 | 4 | 5 | 6 | 8 |
單位成本y元/件 | 30 | 40 | 60 | 50 | 70 |
請(qǐng)畫(huà)出散點(diǎn)圖并從圖中判斷產(chǎn)品產(chǎn)量與單位成本成什么樣的關(guān)系?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com