【題目】(1)在中,內(nèi)角,,的對邊分別為,,,且,證明:;
(2)已知結(jié)論:在直角三角形中,若兩直角邊長分別為,,斜邊長為,則斜邊上的高.若把該結(jié)論推廣到空間:在側(cè)棱互相垂直的四面體中,若三個側(cè)面的面積分別為,,,底面面積為,則該四面體的高與,,,之間的關(guān)系是什么?(用,,,表示)
【答案】(1)見解析.
(2) .
【解析】分析:(1)首先根據(jù)題中的條件,求得,從而可以將所要證明的式子轉(zhuǎn)化,應(yīng)用分析法證得結(jié)果;
(2)根據(jù)題中的條件,類比著平面三角形的面積,可以推出空間幾何體三棱錐的體積對應(yīng)的結(jié)果,在解題的過程中,注意將三棱錐的側(cè)面面積分別寫出來,應(yīng)用體積公式以及各個方程之間的關(guān)系,從而求得結(jié)果.
詳解:(1)證明:由,得,則.
要證,
只需證,
即證,
只需證,即證.
而,顯然成立,故.
(2)解:記該四面體的三條側(cè)棱長分別為,,,
不妨設(shè),,,
由,
得,
于是 ,
即.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了分析本校高中生的性別與是否喜歡數(shù)學(xué)之間的關(guān)系,在高中生中隨機地抽取了90名學(xué)生調(diào)查,得到了如下列聯(lián)表:
喜歡數(shù)學(xué) | 不喜歡數(shù)學(xué) | 總計 | |
男 | 30 | ① | 45 |
女 | ② | 25 | 45 |
總計 | ③ | ④ | 90 |
(1)求①②③④處分別對應(yīng)的值;
(2)能有多大把握認為“高中生的性別與喜歡數(shù)學(xué)”有關(guān)?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB的中點為O,且OA=1,點D在AB的延長線上,且 .固定邊AB,在平面內(nèi)移動頂點C,使得圓M與邊BC,邊AC的延長線相切,并始終與AB的延長線相切于點D,記頂點C的軌跡為曲線Γ.以AB所在直線為x軸,O為坐標原點如圖所示建立平面直角坐標系.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)設(shè)動直線l交曲線Γ于E、F兩點,且以EF為直徑的圓經(jīng)過點O,求△OEF面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=ex+2x2-3x.
(1)求證:函數(shù)f (x)在區(qū)間[0,1]上存在唯一的極值點.
(2)當x≥時,若關(guān)于x的不等式f (x)≥ x2+(a-3)x+1恒成立,試求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】元旦期間,某轎車銷售商為了促銷,給出了兩種優(yōu)惠方案,顧客只能選擇其中的一種,方案一:每滿萬元,可減千元;方案二:金額超過萬元(含萬元),可搖號三次,其規(guī)則是依次裝有個幸運號、個吉祥號的一個搖號機,裝有個幸運號、個吉祥號的二號搖號機,裝有個幸運號、個吉祥號的三號搖號機各搖號一次,其優(yōu)惠情況為:若搖出個幸運號則打折,若搖出個幸運號則打折;若搖出個幸運號則打折;若沒有搖出幸運號則不打折.
(1)若某型號的車正好萬元,兩個顧客都選中第二中方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;
(2)若你評優(yōu)看中一款價格為萬的便型轎車,請用所學(xué)知識幫助你朋友分析一下應(yīng)選擇哪種付款方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合是滿足下列條件的函數(shù)的全體:在定義域內(nèi)存在實數(shù),使得成立.
(Ⅰ)判斷冪函數(shù)是否屬于集合?并說明理由;
(Ⅱ)設(shè), ,
i)當時,若,求的取值范圍;
ii)若對任意的,都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究某班學(xué)生的腳長x(單位:厘米)和身高y(單位:厘米)的關(guān)系,從該班隨機抽取10名學(xué)生,根據(jù)測量數(shù)據(jù)的散點圖可以看出y與x之間有線性相關(guān)關(guān)系,設(shè)其回歸直線方程為 = x+ ,已知 xi=225, yi=1600, =4,該班某學(xué)生的腳長為24,據(jù)此估計其身高為( 。
A.160
B.163
C.166
D.170
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,圓的方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的單位長度,直線的極坐標方程為
(1)當時,判斷直線與圓的關(guān)系;
(2)當上有且只有一點到直線的距離等于時,求上到直線距離為的點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 : 過點的直線交拋物線于兩點,設(shè)
(1)若點 關(guān)于軸的對稱點為,求證:直線經(jīng)過拋物線 的焦點;
(2)若求當最大時,直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com