已知二次函數f(x)=ax2+bx+1(a>0),F(x)=若f(-1)=0,且對任意實數x均有f(x)≥0成立.
(1)求F(x)的表達式;
(2)當x∈[-2,2]時,g(x)=f(x)-kx是單調函數,求k的取值范圍.
科目:高中數學 來源: 題型:解答題
求下列函數f(x)的解析式.
(1) 已知f(1-x)=2x2-x+1,求f(x);
(2) 已知f=x2+,求f(x);
(3) 已知一次函數f(x)滿足f(f(x))=4x-1,求f(x);
(4) 定義在(-1,1)內的函數f(x)滿足2f(x)-f(-x)=lg(x+1),求f(x).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某醫(yī)藥研究所開發(fā)一種新藥,在試驗藥效時發(fā)現:如果成人按規(guī)定劑量服用,那么服藥后每毫升血液中的含藥量y(微克)與時間x(小時)之間滿足y=其對應曲線(如圖所示)過點.
(1)試求藥量峰值(y的最大值)與達峰時間(y取最大值時對應的x值);
(2)如果每毫升血液中含藥量不少于1微克時治療疾病有效,那么成人按規(guī)定劑量服用該藥后一次能維持多長的有效時間(精確到0.01小時)?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數(其中且),是的反函數.
(1)已知關于的方程在區(qū)間上有實數解,求實數的取值范圍;
(2)當時,討論函數的奇偶性和增減性;
(3)設,其中.記,數列的前項的和為(),
求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數的定義域是,對于任意的,有,且當時,.
(1)求的值;
(2)判斷函數的奇偶性;
(3)用函數單調性的定義證明函數為增函數;
(4)若恒成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
我國是水資源較貧乏的國家之一,各地采用價格調控等手段來達到節(jié)約用水的目的,某市每戶每月用水收費辦法是:水費=基本費+超額費+定額損耗費.且有如下兩條規(guī)定:
①若每月用水量不超過最低限量立方米,只付基本費10元加上定額損耗費2元;
②若用水量超過立方米時,除了付以上同樣的基本費和定額損耗費外,超過部分每立方米加付元的超額費.
解答以下問題:(1)寫出每月水費(元)與用水量(立方米)的函數關系式;
(2)若該市某家庭今年一季度每月的用水量和支付的費用如下表所示:
月份 | 用水量(立方米) | 水費(元) |
一 | 5 | 17 |
二 | 6 | 22 |
三 | 12 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com