求證:當(dāng)x≥4時(shí),
x
>lnx.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,導(dǎo)數(shù)的運(yùn)算
專(zhuān)題:導(dǎo)數(shù)的綜合應(yīng)用
分析:設(shè)函數(shù)f(x)=
x
-lnx(x>0)
,則f′(x)=
1
2
×
1
x
-
1
x
=
x
-2
2x
,令f'(x)=0,求出函數(shù)f(x)的單調(diào)區(qū)間,從而證明
x
>lnx
成立.
解答: 證明:
x
>lnx等價(jià)于
x
-lnx>0

設(shè)函數(shù)f(x)=
x
-lnx(x>0)
,
f′(x)=
1
2
×
1
x
-
1
x
=
x
-2
2x

令f'(x)=0,解得x=4,
當(dāng)x>4時(shí),f'(x)>0,
當(dāng)x<4時(shí),f'(x)<0,
∴當(dāng)x=4,f(x)取得極小值,
∴f(x)的單調(diào)遞增區(qū)間是[4,+∞),
f(x)≥f(4).
又當(dāng)x=4時(shí),f(x)=f(4)=2-ln4>0
∴x≥4時(shí),f(x)>0,
x
-lnx>0
,
x
>lnx
成立.
點(diǎn)評(píng):本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,不等式的證明,本題屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)盒子里裝有6張卡片,其中有紅色卡片4張,編號(hào)分別為1,2,3,4; 白色卡片2張,編號(hào)分別為1,2.
(1)從盒子中隨機(jī)抽取2張卡片,求兩張都是紅色的概率;
(2)從盒子中有放回的逐次抽取2張卡片,求兩張卡片的編號(hào)都為2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)變量x,y,測(cè)得一組數(shù)據(jù)如下表:
x 2 4 5 6 8
y 20 40 60 70 80
(1)求變量x與y之間的相關(guān)系數(shù)(保留四個(gè)有效數(shù)字),并判斷是否具有線性相關(guān)關(guān)系?是正相關(guān)還是負(fù)相關(guān)?(參考數(shù)據(jù)
29
≈5.385)
(2)若變量x與y之間具有線性相關(guān)關(guān)系,求y對(duì)x的線性回歸方程
y
=bx+
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用導(dǎo)數(shù)的定義求:
(1)y=
2
x2
在x=1處的導(dǎo)數(shù);
(2)y=x2+ax+b(a,b為常數(shù))在x=-1處的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三角形有這樣一個(gè)性質(zhì):正三角形內(nèi)任一點(diǎn)(不與頂點(diǎn)重合)到三邊的距離和為定值.且此定值即高.類(lèi)比到空間正四面體,對(duì)于空間正四面體內(nèi)任一點(diǎn)(不與頂點(diǎn)重合),關(guān)注它到四個(gè)面的距離和,請(qǐng)類(lèi)比出一個(gè)正確的結(jié)論.并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sinxcosx-
3
cos(x+π)cosx(x∈R).
(1)求f(x)的最小正周期;
(2)求y=f(x)在[0,
π
3
]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文科)如圖,在四棱錐P-ABCD中,平面PAD⊥底面ABCD,PA⊥AD,AB∥CD,AB⊥AD,CD=2AB,E和F分別是CD和PC的中點(diǎn).求證:
(1)PA⊥底面ABCD;     
(2)BE∥平面PAD;     
(3)平面BEF⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
a
ex
+blnx.
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=x+1,求a,b的值;
(Ⅱ)當(dāng)a=e,b=1時(shí),求f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2(2x2+mx-1)在區(qū)間(1,+∞)上單調(diào)遞增,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案