7.已知長方體ABCD-A1B1C1D1中,AB=4,BC=3,AA1=5,則異面直線BD1與AC所成角的余弦值為$\frac{{7\sqrt{2}}}{50}$.

分析 建立空間直角坐標(biāo)系,利用向量法能求出AC與BD1所成角的余弦值.

解答 解:建立如圖坐標(biāo)系,
∵在長方體ABCD-A1B1C1D1中,AB=4,BC=3,AA1=5,
∴D1(0,0,5),B(3,4,0),
A(3,0,0),C(0,4,0),
∴$\overrightarrow{B{D}_{1}}$=(-3,-4,5),$\overrightarrow{AC}$=(-3,4,0).
∴cos<$\overrightarrow{B{D}_{1}}$,$\overrightarrow{AC}$>=$\frac{9-16}{\sqrt{9+16+25}•\sqrt{9+16}}$=-$\frac{{7\sqrt{2}}}{50}$.
∴AC與BD1所成角的余弦值$\frac{{7\sqrt{2}}}{50}$.
故答案為:$\frac{{7\sqrt{2}}}{50}$.

點評 本題考查異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下面四個函數(shù):(1)y=1-x;(2)y=2x-1;(3)y=x2-1;(4)y=$\frac{5}{x}$,其中定義域與值域相同的函數(shù)有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在口袋中有不同編號的5個白球和4個黑球,如果不放回地依次取兩個球,則在第一次取到白球的條件下,第二次也取得白球的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.要使如圖所示的程序框圖輸出的P不小于60,則輸入的n值至少為( 。
A.5B.6C.7D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A、B、C的對邊分別為a、b、c,且bcosC+(2a+c)cosB=0.
(1)求角B的度數(shù);
(2)若b=3,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.關(guān)于x的二次方程x2+ax+a2-4=0的兩根異號,則a的取值范圍是(-2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知x,y∈R+,$\overrightarrow{a}$=(x,1),$\overrightarrow$=(1,y-1),若$\overrightarrow{a}$⊥$\overrightarrow$,則$\frac{1}{x}$+$\frac{1}{y}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列與y=|x|是同一函數(shù)的是( 。
A.y=($\sqrt{x}$)2B.y=$\sqrt{{x}^{2}}$C.y=$\left\{\begin{array}{l}{x,(x>0)}\\{-x,(x<0)}\end{array}\right.$D.y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)f(x)=(x-2)(x+a)是偶函數(shù),則實數(shù)a的值為( 。
A.2B.0C.-2D.±2

查看答案和解析>>

同步練習(xí)冊答案