1.已知函數(shù)f(x)和g(x)的圖象關(guān)于原點(diǎn)對(duì)稱,且f(x)=x2+x.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.

分析 (Ⅰ)設(shè)g(x)任一點(diǎn)P(x0,y0),則其關(guān)于原點(diǎn)對(duì)稱點(diǎn)P'(-x0,-y0)在f(x)圖象上,故有-y0=(-x02+(-x0),即y0=-x02+x0 ,從而得到函數(shù)g(x)的解析式.
(Ⅱ)h(x)=(-1-λ)x2+(1-1λ)x+1,λ=-1時(shí),h(x)=2x+1,在[-1,1]上是增函數(shù);λ≠-1時(shí),根據(jù)二次函數(shù)的單調(diào)性即可求得λ的范圍,合并λ=-1即得λ的取值范圍.

解答 解:(Ⅰ)設(shè)g(x)任一點(diǎn)P(x0,y0),則其關(guān)于原點(diǎn)對(duì)稱點(diǎn)P'(-x0,-y0)在f(x)圖象上,
則-y0=(-x02+(-x0),即y0=-x02+x0 ,
∴g(x)=-x2+x.
(Ⅱ)h(x)=-x2+x-λ(x2+x)+1=(-1-λ)x2+(1-λ)x+1;
即h(x)=(-1-λ)x2+(1-λ)x+1;
①若λ=-1,h(x)=2x+1,滿足在[-1,1]上是增函數(shù);
②若λ≠-1,h(x)是二次函數(shù),對(duì)稱軸為x=$\frac{1-λ}{2(1+λ)}$;
(。┊(dāng)λ<-1時(shí),$\frac{1-λ}{2(1+λ)}$≤-1,解得-3≤λ<-1,
(ⅱ)當(dāng)λ>-1時(shí),$\frac{1-λ}{2(1+λ)}$≥1,解得=1<λ≤-$\frac{1}{3}$.
綜上,-3≤λ≤-$\frac{1}{3}$.

點(diǎn)評(píng) 本題以函數(shù)為載體,考查函數(shù)解析式的求解,考查函數(shù)的單調(diào)性,求解析式的關(guān)鍵是利用對(duì)稱性,求得對(duì)稱點(diǎn)坐標(biāo)之間的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)y=ax2+bx+c,其中a,b,c∈{0,1,2},則不同的二次函數(shù)的個(gè)數(shù)共有( 。
A.256個(gè)B.18個(gè)C.16個(gè)D.10個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{2ax-{a}^{2}+1}{{x}^{2}+1}$,其中a∈R.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)當(dāng)a≠0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知{an}是遞增的等差數(shù)列a3=$\frac{5}{2}$,且a2a4=6.
(1)求{an}的首項(xiàng)a1和公差d;
(2)求{an}的通項(xiàng)和前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-π<φ<0)的部分圖象如圖所示,則ω=2,φ=-$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=Sn+$\frac{n+1}{3n}$•an(n∈N*),且a1=1.
(Ⅰ)證明:數(shù)列{$\frac{{a}_{n}}{n}$}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2的單調(diào)遞增區(qū)間是( 。
A.(-∞,-1),(0,+∞)B.(-∞,-1)∪(0,+∞)C.(-1,0)D.(-∞,0),(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若實(shí)數(shù)x,y滿足方程x2+y2-4x+1=0,則x2+y2的最大值是7+4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在等差數(shù)列{an}中,a14+a15+a16=-54,a9=-36,Sn為其前n項(xiàng)和.
(1)求Sn的最小值,并求出相應(yīng)的n值;
(2)求Tn=|a1|+|a2|+…+|an|.

查看答案和解析>>

同步練習(xí)冊(cè)答案