已知曲線C上的動點P()滿足到定點A(-1,0)的距離與到定點B(1,0)距離之比為
(1)求曲線C的方程。
(2)過點M(1,2)的直線與曲線C交于兩點M、N,若|MN|=4,求直線的方程。
(1)(或)(2)或.
解析試題分析:(1)根據(jù)動點P(x,y)滿足到定點A(-1,0)的距離與到定點B(1,0)距離之比為,建立方程,化簡可得曲線C的方程.
(2)分類討論,設出直線方程,求出圓心到直線的距離,利用勾股定理,即可求得直線l的方程.
試題解析:(1)由題意得|PA|=|PB| 2分;
故 3分;
化簡得:(或)即為所求。 5分;
(2)當直線的斜率不存在時,直線的方程為,
將代入方程得,所以|MN|=4,滿足題意。 8分;
當直線的斜率存在時,設直線的方程為+2
由圓心到直線的距離 10分;
解得,此時直線的方程為
綜上所述,滿足題意的直線的方程為:或。 12分.
考點:直線和圓的方程的應用.
科目:高中數(shù)學 來源: 題型:解答題
如圖,圓O的直徑AB=8,圓周上過點C的切線與BA的延長線交于點E,過點B作AC的平行線交EC的延長線于點P.
(1)求證:BC2=AC·BP;
(2)若EC=2,求PB的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,已知D為△ABC的BC邊上一點,⊙O1經(jīng)過點B、D交AB于另一點E,⊙O2經(jīng)過點C、D交AC于另一點F,⊙O1與⊙O2交于點G.
(1)求證:∠EAG=∠EFG;
(2)若⊙O2的半徑為5,圓心O2到直線AC的距離為3,AC=10,AG切⊙O2于G,求線段AG的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(2014·廣州模擬)已知☉M:x2+(y-2)2=1,Q是x軸上的動點,QA,QB分別切☉M于A,B兩點.
(1)如果|AB|=,求直線MQ的方程.
(2)求證:直線AB恒過一個定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系中,如圖,已知橢圓E:的左、右頂點分別為、,上、下頂點分別為、.設直線的傾斜角的正弦值為,圓與以線段為直徑的圓關于直線對稱.
(1)求橢圓E的離心率;
(2)判斷直線與圓的位置關系,并說明理由;
(3)若圓的面積為,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知兩點、,點為坐標平面內(nèi)的動點,滿足.
(1)求動點的軌跡方程;
(2)若點是動點的軌跡上的一點,是軸上的一動點,試討論直線
與圓的位置關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com