如圖四邊形EFGH為空間四面體A-BCD的一個(gè)截面,若截面為平行四邊形.
(1)求證:AB∥平面EFGH,CD∥平面EFGH;
(2)若AB=4,CD=6,求四邊形EFGH周長(zhǎng)的取值范圍.
考點(diǎn):直線與平面平行的判定
專(zhuān)題:空間位置關(guān)系與距離
分析:(1)由已知條件推導(dǎo)出EF∥HG,從而得到EF∥平面ABD,進(jìn)而得到EF∥AB,由此能證明AB∥平面EFGH,同理CD平面EFGH.
(2)由空間四邊形ABCD被一平面所截,截面EFGH是平行四邊形.
CF
CB
=
CE
CA
=
EF
AB
=k,則0<k<1,且
AE
AC
=
EH
CD
=1-k,四邊形EFGH的周長(zhǎng)=12-4k,即可得出結(jié)論.
解答: (1)證明:∵四邊形EFGH為平行四邊形,∴EF∥HG.
∵HG?平面ABD,EF不在平面ABC內(nèi),
∴EF∥平面ABD.…
∵EF?平面ABD,平面ABD∩平面ABC=AB,
∴EF∥AB.
∵EF?平面EFGH,AB不包含于平面EFGH,
∴AB∥平面EFGH,
同理CD平面EFGH.
(2)解:∵空間四邊形ABCD被一平面所截,截面EFGH是平行四邊形.
CF
CB
=
CE
CA
=
EF
AB
=k,則0<k<1,且
AE
AC
=
EH
CD
=1-k,
∴四邊形EFGH的周長(zhǎng)=12-4k,∴8<四邊形EFGH的周長(zhǎng)<12.
點(diǎn)評(píng):本題考查直線與平面平行的證明,考查四邊形的周長(zhǎng)求法,解題時(shí)要認(rèn)真審題,注意空間相象力的培養(yǎng),解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若在[2,4]上f(x)=loga(ax2-x)是增函數(shù),則a取值范圍是(  )
A、a>1
B、
1
2
<a<1或a>1
C、
1
4
<a<1
D、0<a<
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a7a11+a8a10=2e4,lna1+lna2+lna3+…+lna17=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+x-xlnx(a>0).
(1)已知直線y=x+1與g(x)=f′(x)相切,求a的值;
(2)若函數(shù)滿(mǎn)足f(1)=2,且在定義域內(nèi)f(x)>bx2+2x恒成立,求實(shí)數(shù)b的取值范圍;
(3)若函數(shù)f(x)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐S-ABC中,SA⊥底面ABC,點(diǎn)B為以AC為直徑的圓上任意一動(dòng)點(diǎn),且SA=AB,點(diǎn)M是SB的中點(diǎn),AN⊥SC且交SC于點(diǎn)N.
(I)求證:SC⊥面AMN
(Ⅱ)當(dāng)AB=BC時(shí),求二面角N-MA-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,右焦點(diǎn)為F,且橢圓E上的點(diǎn)到點(diǎn)F距離的最小值為2.
(1)求a,b的值;
(2)設(shè)橢圓E的左、右頂點(diǎn)分別為A,B,過(guò)點(diǎn)A的直線l與橢圓E及直線x=8分別相交于點(diǎn)M,N.
①當(dāng)過(guò)A,F(xiàn),N三點(diǎn)的圓半徑最小時(shí),求這個(gè)圓的方程;
②若cos∠AMB=-
65
65
,求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

地球赤道的半徑為6370km,所以赤道上1°的弧長(zhǎng)是
 
km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
長(zhǎng)軸上有一頂點(diǎn)到兩個(gè)焦點(diǎn)之間的距離分別為:3+2
2
,3-2
2

(1)求橢圓的方程;
(2)若點(diǎn)P橢圓上第一象限,F(xiàn)1,F(xiàn)2分別為橢圓的左右焦點(diǎn),若滿(mǎn)足
PF1
PF2
=0,求點(diǎn)P到橢圓右準(zhǔn)線的距離;
(3)過(guò)點(diǎn)Q(1,0)作直線l(與x軸不垂直)與橢圓交于M,N兩點(diǎn),與y軸交于點(diǎn)R,若
RM
MQ
,
RN
NQ
,求證:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某化妝品的廣告費(fèi)用x(萬(wàn)元)與銷(xiāo)售額y(百萬(wàn)元)的統(tǒng)計(jì)數(shù)據(jù)如下表所示:
x0134
y2.24.34.86.7
從散點(diǎn)圖分析,y與x有較強(qiáng)的線性相關(guān)性,且
?
y
=0.95x+
?
a
,若投入廣告費(fèi)用為5萬(wàn)元,預(yù)計(jì)銷(xiāo)售額為
 
百萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案