分析 (1)由已知可得CD⊥AB.再由AA1⊥平面ABC,得AA1⊥CD.利用線面垂直的判定可得CD⊥平面ABB1A1.進一步得到CD⊥B1E;
(2)當λ=$\frac{1}{3}$時,$AE=\frac{1}{3}A{A}_{1}=\frac{2}{3}$.再由△ABC是等腰直角三角形,且斜邊$AB=\sqrt{2}$,得AC=BC=1.然后利用${V}_{{C}_{1}B-ECD}={V}_{{C}_{1}-BCE}+{V}_{D-BCE}$結(jié)合等積法得答案.
解答 (1)證明:∵△ABC是等腰直角三角形,點D為AB的中點,∴CD⊥AB.
∵AA1⊥平面ABC,CD?平面ABC,∴AA1⊥CD.
又∵AA1?平面ABB1A1,AB?平面ABB1A1,AA1∩AB=A,
∴CD⊥平面ABB1A1.
∵點E在線段AA1上,∴B1E?平面ABB1A1,
∴CD⊥B1E;
(2)解:當λ=$\frac{1}{3}$時,$AE=\frac{1}{3}A{A}_{1}=\frac{2}{3}$.
∵△ABC是等腰直角三角形,且斜邊$AB=\sqrt{2}$,∴AC=BC=1.
∴${V_{{C_1}-CBE}}={V_{E-{C_1}BC}}=\frac{1}{3}AC•{S_{△{C_1}BC}}=\frac{1}{3}×\frac{1}{2}×1×1×2=\frac{1}{3}$,
${V_{D-BEC}}={V_{E-CDB}}=\frac{1}{3}AE•{S_{△DBC}}=\frac{1}{3}×\frac{1}{2}×\frac{1}{2}×1×1×\frac{2}{3}=\frac{1}{18}$,
∴$V=\frac{1}{3}+\frac{1}{18}=\frac{7}{18}$.
點評 本題考查線面垂直的判定和性質(zhì),考查空間想象能力和思維能力,訓(xùn)練了利用等積法求得多面體的體積,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{3}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6π | B. | ($\sqrt{2}$+$\sqrt{5}$+1)π | C. | (2$\sqrt{2}$+2$\sqrt{5}$)π | D. | ($\sqrt{2}$+$\sqrt{5}$)π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題¬p是真命題 | |
B. | 命題p是特稱命題 | |
C. | 命題p是全稱命題 | |
D. | 命題p既不是全稱命題也不是特稱命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=-f({x+\frac{π}{2}})$ | B. | $f(x)=f({-x+\frac{π}{2}})$ | C. | $f(x)•f({x+\frac{π}{2}})=1$ | D. | $f(x)=-f({-x+\frac{π}{2}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 16 | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -3 | C. | 0 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com