6.若等比數(shù)列{an}的前n項(xiàng)和${S_n}={2^{n-1}}+a$,則a3a5=( 。
A.4B.8C.16D.32

分析 利用遞推關(guān)系可得an,即可得出.

解答 解:等比數(shù)列{an}的前n項(xiàng)和${S_n}={2^{n-1}}+a$,
n≥2時(shí),an=Sn-Sn-1=2n-1+a-(2n-2+a),化為:an=2n-2
則a3a5=2×23=16.
故選:C.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.過(guò)雙曲線(xiàn)C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)F的直線(xiàn)l:y=$\sqrt{3}x-4\sqrt{3}$與C只有一個(gè)公共點(diǎn),則C的焦距為8,C的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在直三棱柱ABC-A1B1C1中,底面△ABC是等腰直角三角形,且斜邊AB=$\sqrt{2}$,側(cè)棱AA1=2,點(diǎn)D為AB的中點(diǎn),點(diǎn)E在線(xiàn)段AA1上,AE=λAA1(λ為實(shí)數(shù)).
(1)求證:不論λ取何值時(shí),恒有CD⊥B1E;
(2)當(dāng)λ=$\frac{1}{3}$時(shí),求多面體C1B-ECD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)$a=\int_0^π{({sinx+cosx})dx}$,且${({{x^2}-\frac{1}{ax}})^n}$的展開(kāi)式中只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,那么展開(kāi)式中的所有項(xiàng)的系數(shù)之和是(  )
A.1B.$\frac{1}{256}$C.64D.$\frac{1}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={x|-1≤x≤2},B={y|y=x2,x∈A},則A∩B=(  )
A.[-1,0]B.[0,2]C.[2,4]D.[-1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)$f(x)=sin({2x+\frac{π}{6}})+2{cos^2}x$.
(1)作出函數(shù)y=f(x)在一個(gè)周期內(nèi)的圖象,并寫(xiě)出其單調(diào)遞減區(qū)間;
(2)當(dāng)$x∈[{0,\frac{π}{2}}]$時(shí),求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x<1}\\{4(x+a)(x+2a),x≥1}\end{array}\right.$,若f(x)恰有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(-∞,-2]∪(-1,-$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在△ABC中,AB⊥AC,AB=$\frac{1}{t}$,AC=t,P是△ABC所在平面內(nèi)一點(diǎn),若$\overrightarrow{AP}$=$\frac{4\overrightarrow{AB}}{|\overrightarrow{AB}|}+\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$,則△PBC面積的最小值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知等腰梯形ABCD中AB∥CD,AB=2CD=4,∠BAD=60°,雙曲線(xiàn)以A,B為焦點(diǎn),且與線(xiàn)段CD(包括端點(diǎn)C、D)有兩個(gè)交點(diǎn),則該雙曲線(xiàn)的離心率的取值范圍是[$\sqrt{3}$+1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案