A. | 2 | B. | 2$\sqrt{2}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
分析 利用M為圓心的圓恰好與y軸相切,與x軸交于A,B兩點,其中A是雙曲線的右頂點,若△MAB是等邊三角形,得出M(2a,$\sqrt{3}$a),代入雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,即可求出雙曲線的離心率.
解答 解:∵M為圓心的圓恰好與y軸相切,與x軸交于A,B兩點,其中A是雙曲線的右頂點,若△MAB是等邊三角形,
∴M(2a,$\sqrt{3}$a),
代入雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,可得$\frac{4{a}^{2}}{{a}^{2}}-\frac{3{a}^{2}}{^{2}}$=1,
∴a=b,
∴c=$\sqrt{2}a$,
∴$e=\frac{c}{a}=\sqrt{2}$.
故選:C.
點評 本題考查雙曲線的離心率的求法,考查化簡整理的運算能力,確定M的坐標是關鍵,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $-\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1] | B. | [8,+∞) | C. | (-∞,-1]∪[8,+∞) | D. | (-1,8) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{e}$ | B. | 2e2 | C. | 2e | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com