曲線
x2
4
+
y2
3
=1與曲線
x2
4-m
+
y2
3-m
=1(m<3)的(  )
A、長軸長相等B、短軸長相等
C、離心率相等D、焦距相等
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:判斷兩個曲線的形狀,然后求解焦距即可.
解答: 解:由題意曲線
x2
4
+
y2
3
=1與曲線
x2
4-m
+
y2
3-m
=1(m<3)
可知兩條曲線都是橢圓,曲線
x2
4
+
y2
3
=1的焦距為:2
4-3
=2;
曲線
x2
4-m
+
y2
3-m
=1(m<3)的焦距為:2
(4-m)-(3-m)
=2.
兩條曲線的焦距相等.
故選:D.
點評:本題考查橢圓的基本性質(zhì)是應(yīng)用,判斷兩條曲線的形狀是解題的關(guān)鍵,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱中,所有的棱長都為2,D為CC1的中點,求證:A1B⊥平面AB1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的首項a1=
1
3
,前n項和為Sn,滿足s1、2s2、3s3成等差數(shù)列;
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)bn=2-(
1
1+an
+
1
1-an+1
)),數(shù)列bn的前n項和為Tn,求證:Tn
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上點到兩焦點的距離和為
2
3
,短軸長為
1
2
,直線l與橢圓C交于M、N兩點.
(Ⅰ)求橢圓C方程;
(Ⅱ)若直線MN與圓O:x2+y2=
1
25
相切,證明:∠MON為定值;
(Ⅲ)在(Ⅱ)的條件下,求|OM|•|ON|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,
AD
=
1
3
AC
,
BE
=
1
2
BC
,P是AE與BD的交點,設(shè)
BP
=x
BA
+y
BC
,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式-
1
2
x2
+2x>mx的解集是(0,2),則m的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=-x3+2x2-x(x∈R)
(1)求曲線y=f(x)在點(2,f(x))處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[0,2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨機抽取100名年齡在[10,20),[20,30),…[50,60)年齡段的市民進(jìn)行問卷調(diào)查,由此得到樣本的頻率分布直方圖如圖所示,從不小于40歲的人中按年齡段分層抽樣的方法隨機抽取8人,則在[50,60)年齡段抽取的人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)m,n滿足m2+n2=2,則點P(m+n,m-n)的軌跡方程是( 。
A、x2+y2=1
B、x2-y2=1
C、x2+y2=2
D、x2+y2=4

查看答案和解析>>

同步練習(xí)冊答案