已知函數(shù)f(x)=
ex
a
-
a
ex
,(a∈R且a>0).
(1)判斷函數(shù)f(x)的單調(diào)性,并證明;
(2)若函數(shù)f(x)的定義域?yàn)椋?2,2)時(shí),求使f(1-m)-f(m2-1)<0成立的實(shí)數(shù)m的取值范圍.
考點(diǎn):函數(shù)單調(diào)性的判斷與證明,函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求f′(x),根據(jù)f′(x)的符號(hào)即可判斷函數(shù)f(x)的單調(diào)性;
(2)由f(1-m)-f(m2-1)<0得,f(1-m)<f(m2-1),根據(jù)f(x)在(-2,2)上的單調(diào)性及定義域(-2,2)即可得到關(guān)于m的不等式組,解不等式組即得m的取值范圍.
解答: 解:(1)f′(x)=
ex
a
+
a
ex
;
∵a>0,∴f′(x)>0;
∴f(x)在R上是增函數(shù);
(2)由原不等式得:f(1-m)<f(m2-1);
∵f(x)在(-2,2)上是增函數(shù),所以:
-2<1-m<2
-2<m2-1<2
1-m<m2-1
,解得1<m<
3
;
∴實(shí)數(shù)m的取值范圍是(1,
3
)
點(diǎn)評(píng):考查函數(shù)導(dǎo)數(shù)符號(hào)和函數(shù)單調(diào)性的關(guān)系,根據(jù)函數(shù)單調(diào)性解不等式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
x2+2x,(x≥0)
-x2+2x,(x<0)
,f(t2+2t)+f(t-4)>0,則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(x+4)-3x的零點(diǎn)有(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)任意n∈N*,都有Sn=3an-5n.
(1)求數(shù)列{an}的首項(xiàng);
(2)若數(shù)列{an+λ}是等比數(shù)列,試求出實(shí)數(shù)λ的值,并寫出數(shù)列{an}的通項(xiàng)公式;
(3)數(shù)列{bn}滿足bn=
9n+4
an+5
,是否存在m,對(duì)任意n∈N*使得bn≤bm成立?如果存在,求出正整數(shù)m的值,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)平面α∩平面β=EF,AB⊥α,CD⊥α,垂足分別為B,D,如果再增加一個(gè)條件,就可以推出BD⊥EF.現(xiàn)有:①AC⊥β;②AC∥EF;③AC與CD在β內(nèi)的射影
在同一條直線上.那么上述三個(gè)條件中能成為增加條件的個(gè)數(shù)是( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線a,b同時(shí)和第三條直線垂直,則直線a,b的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
x-1
,若|f(x)|≥
1
5
|a2-a|對(duì)于任意x∈[-4,-1]恒成立,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,割線PBC經(jīng)過圓心O,OB=PB=1,又PED交圓O于E,D,且DE=
4
7
7
,則△OPD的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(n)=2+24+27+210+…+23n+10(n∈N),則f(n)等于(  )
A、
2
7
(8n-1)
B、
2
7
(8n+1-1)
C、
2
7
(8n+3-1)
D、
2
7
(8n+4-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案