10.如圖所示,向量$\overrightarrow{O{Z_1}},\overrightarrow{O{Z_2}}$所對應(yīng)的復(fù)數(shù)分別為Z1,Z2,則Z1•Z2=( 。
A.4+2iB.2+iC.2+2iD.3+i

分析 讀圖求出復(fù)數(shù)z1,z2,根據(jù)復(fù)數(shù)的乘法運算法則計算即可

解答 解:由圖可得,z1=1+i,z2=3-i,
∴Z1•Z2=(1+i)(3-i)=3+1+3i-i=4+2i,
故選:A.

點評 本題考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=ln(x+1)+$\frac{1}{{\sqrt{2-{x^2}}}}$的定義域是(-1,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.給定命題p:“若a2017>-1,則a>-1”;命題q:“?x∈R,x2tanx2>0”,則下列命題中,真命題的是(  )
A.p∨qB.(¬p)∨qC.(¬p)∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知a,b,c,d是正實數(shù),且abcd=1,求證:a5+b5+c5+d5≥a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知復(fù)數(shù)z滿足(1+i)•z=2-i,則復(fù)數(shù)z的共軛復(fù)數(shù)為( 。
A.$\frac{1}{2}-\frac{3}{2}i$B.$\frac{1}{2}+\frac{3}{2}i$C.1+3iD.1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知點A是直角三角形ABC的直角頂點,且A(2a,2),B(-4,a),C(2a+2,2),則△ABC的外接圓的方程是( 。
A.x2+(y-3)2=5B.x2+(y+3)2=5C.(x-3)2+y2=5D.(x+3)2+y2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE與∠AEC的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.Sn等差數(shù)列{an}的前n項和,a1>0,當且僅當n=10時Sn最大,則$\frac{{S}_{12}}{{a}_{12}}$的取值范圍為(-54,-21).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦點在直線l:$\sqrt{3}$x-y-3=0上,且橢圓上任意兩個關(guān)于原點對稱的點與橢圓上任意一點的連線的斜率之積為-$\frac{1}{4}$.
(1)求橢圓C的方程;
(2)若直線t經(jīng)過點P(1,0),且與橢圓C有兩個交點A,B,是否存在直線l0:x=x0(其中x0>2)使得A,B到l0的距離dA,dB滿足$\frac{d_A}{d_B}=\frac{{|{PA}|}}{{|{PB}|}}$恒成立?若存在,求出x0的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案