(1)4(x-y+1)+y(y-2x)

(2)b2+c2+2ab+2ac+2bc

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某商店統(tǒng)計了最近6個月某商品的進(jìn)價x(元)與售價y(元)的對應(yīng)數(shù)據(jù)如下表:
x 3 5 2 7 8 11
y 4 6 3 9 12 14
則回歸直線方程是
 

注:線性回歸直線方程系數(shù)公式:b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2

a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費用y(萬元),有如下的統(tǒng)計資料:
使用年限x 2 3 4 5 6
維修費用y 2.2 3.8 5.5 6.5 7.0
由資料知y與x呈線性相關(guān)關(guān)系.
(參考數(shù)據(jù)
b
=
n
i-1
(xi-x)(yi-y) 
n
i-1
(xi-
.
x
2
=
n
i-1
 xiyi-n
.
x
.
y
n
i-1
x
2
i
-n
.
x
2
a
=
.
y
-b
.
x
,
.
x
=4
,
.
y
=5
,
5
i-1
x
2
i
=90
,
5
i-1
xiyi=112.3

估計當(dāng)使用年限為10年時,維修費用是
12.38
12.38
萬元.線性回歸方程:y=
b
x+
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

班主任為了對本班學(xué)生的考試成績進(jìn)行分析,決定從全班25名女同學(xué),15名男同學(xué)中隨機抽取一個容量為8的樣本進(jìn)行分析.若這8位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)對應(yīng)如下表:
學(xué)生編號 1 2 3 4 5 6 7 8
數(shù)學(xué)分?jǐn)?shù)x 60 65 70 75 80 85 90 95
物理分?jǐn)?shù)y 72 77 80 84 88 90 93 95
根據(jù)如表數(shù)據(jù)用變量y與x的相關(guān)關(guān)系
(1)畫出樣本的散點圖,并說明物理成績y與數(shù)學(xué)成績x之間是正相關(guān)還是負(fù)相關(guān)?
(2)求y與x的線性回歸直線方程(系數(shù)精確到0.01),并指出某個學(xué)生數(shù)學(xué)83分,物理約為多少分?
參考公式:回歸直線的方程是:
?
y
=bx+a
,
其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x
;其中
?
y
i
是與xi對應(yīng)的回歸估計值.
參考數(shù)據(jù):
.
x
=77.5,
.
y
=85,
8
i=1
(x1-
.
x
)2≈1050
,
8
i=1
(x1-
.
x
)(y1-
.
y
)≈688

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-(m+1)x+4.
(Ⅰ)當(dāng)x∈(0,1]時,若m>0,求函數(shù)F(x)=f(x)-(m-1)x的最小值;
(Ⅱ)若函數(shù)G(x)=2f(x)的圖象與直線y=1恰有兩個不同的交點A(x1,1),B(x2,1)(0≤x1<x2≤3),求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案