在平面直角坐標(biāo)系xOy中,橢圓C:=1(a>b>0)的右焦點(diǎn)為F(4m,0)(m>0,m為常數(shù)),離心率等于0.8,過(guò)焦點(diǎn)F、傾斜角為θ的直線l交橢圓C于M、N兩點(diǎn).

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若θ=90°,,求實(shí)數(shù)m;
(3)試問(wèn)的值是否與θ的大小無(wú)關(guān),并證明你的結(jié)論.

(1)=1.(2)m=(3)無(wú)關(guān)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓)的右焦點(diǎn),右頂點(diǎn),且

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若動(dòng)直線與橢圓有且只有一個(gè)交點(diǎn),且與直線交于點(diǎn),問(wèn):是否存在一個(gè)定點(diǎn),使得.若存在,求出點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn),離心率為
(1)求橢圓的方程;
(2)直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓的右頂點(diǎn).直線與直線分別與軸交于點(diǎn),試問(wèn)以線段為直徑的圓是否過(guò)軸上的定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓,橢圓的長(zhǎng)軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),點(diǎn)分別在橢圓上,,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖;已知橢圓C:的離心率為,以橢圓的左頂點(diǎn)T為圓心作圓T:設(shè)圓T與橢圓C交于點(diǎn)M、N.

(1)求橢圓C的方程;
(2)求的最小值,并求此時(shí)圓T的方程;
(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn)。求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)A1、A2與B分別是橢圓E:=1(a>b>0)的左、右頂點(diǎn)與上頂點(diǎn),直線A2B與圓C:x2+y2=1相切.
(1)求證:=1;
(2)P是橢圓E上異于A1、A2的一點(diǎn),若直線PA1、PA2的斜率之積為-,求橢圓E的方程;
(3)直線l與橢圓E交于M、N兩點(diǎn),且·=0,試判斷直線l與圓C的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在直線2x-y-4=0上,求拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知梯形ABCD中|AB|=2|CD|,點(diǎn)E滿足=λ,雙曲線過(guò)C、D、E三點(diǎn),且以A、B為焦點(diǎn).當(dāng)≤λ≤時(shí),求雙曲線離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓=1的焦點(diǎn)為F1、F2,點(diǎn)P為橢圓上的動(dòng)點(diǎn),當(dāng)∠F1PF2為鈍角時(shí),求點(diǎn)P的橫坐標(biāo)x0的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案