(2013•鎮(zhèn)江二模)在矩形ABCD中,對角線AC與相鄰兩邊所成的角為α,β,則cos2α+cos2β=1.類比到空間中一個正確命題是:在長方體ABCD-A1B1C1D1中,對角線AC1與相鄰三個面所成的角為α,β,γ,則有
cos2α+cos2β+cos2γ=2
cos2α+cos2β+cos2γ=2
分析:本題考查的知識點是類比推理,由在長方形中,設(shè)一條對角線與其一頂點出發(fā)的兩條邊所成的角分別是α,β,則有cos2α+cos2β=1,根據(jù)長方體性質(zhì)可以類比推斷出空間性質(zhì),從而得出答案.
解答:解:我們將平面中的兩維性質(zhì),類比推斷到空間中的三維性質(zhì).
由在長方形中,設(shè)一條對角線與其一頂點出發(fā)的兩條邊所成的角分別是α,β,
則有cos2α+cos2β=1,
我們根據(jù)長方體性質(zhì)可以類比推斷出空間性質(zhì),
∵長方體ABCD-A1B1C1D1中,
對角線AC1與過A點的三個面ABCD,AA1B1B、AA1D1D所成的角分別為α,β,γ,
∴cosα=
AC
AC1
,cosβ=
AB1
AC1
,cosγ=
AD1
AC1
,
∴cos2α+cos2β+cos2γ
=
AC2+A
B
2
1
+A
D
2
1
A
C
2
1
=
2(AB2+AD2+A
A
2
1
)
AB2+AD2+A
A
2
1
=2.
故答案為:cos2α+cos2β+cos2γ=2.
點評:本題考查的知識點是類比推理,在由平面圖形的性質(zhì)向空間物體的性質(zhì)進行類比時,常用的思路有:由平面圖形中點的性質(zhì)類比推理出空間里的線的性質(zhì),由平面圖形中線的性質(zhì)類比推理出空間中面的性質(zhì),由平面圖形中面的性質(zhì)類比推理出空間中體的性質(zhì),或是將平面中的兩維性質(zhì),類比推斷到空間中的三維性質(zhì).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•鎮(zhèn)江二模)已知a為正的常數(shù),函數(shù)f(x)=|ax-x2|+lnx.
(1)若a=2,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)設(shè)g(x)=
f(x)x
,求函數(shù)g(x)在區(qū)間[1,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鎮(zhèn)江二模)如圖,設(shè)A,B分別為橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點和上頂點,過原點O作直線交線段AB于點M(異于點A,B),交橢圓于C,D兩點(點C在第一象限內(nèi)),△ABC和△ABD的面積分別為S1與S2
(1)若M是線段AB的中點,直線OM的方程為y=
1
3
x
,求橢圓的離心率;
(2)當點M在線段AB上運動時,求
S1
S2
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鎮(zhèn)江二模)已知數(shù)列{bn}滿足b1=
1
2
,
1
bn
+bn-1=2(n≥2,n∈N*)

(1)求b2,b3,猜想數(shù)列{bn}的通項公式,并用數(shù)學歸納法證明;
(2)設(shè)x=
b
n
n
,y=
b
n+1
n
,比較xx與yy的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鎮(zhèn)江二模)已知i是虛數(shù)單位,復數(shù)z=
3+i1+i
對應(yīng)的點在第
象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鎮(zhèn)江二模)設(shè)全集U=R,集合A={x|-1≤x≤3},B={x|x>1},則A∩?UB
{x|-1≤x≤1}
{x|-1≤x≤1}

查看答案和解析>>

同步練習冊答案