【題目】“五一”期間,甲乙兩個商場分別開展促銷活動.
(Ⅰ)甲商場的規(guī)則是:凡購物滿100元,可抽獎一次,從裝有大小、形狀相同的4個白球、4個黑球的袋中摸出4個球,中獎情況如下表:
摸出的結(jié)果 | 獲得獎金(單位:元) |
4個白球或4個黑球 | 200 |
3個白球1個黑球或3個黑球1個白球 | 20 |
2個黑球2個白球 | 10 |
記為抽獎一次獲得的獎金,求的分布列和期望.
(Ⅱ)乙商場的規(guī)則是:凡購物滿100元,可抽獎10次.其中,第次抽獎方法是:從編號為的袋中(裝有大小、形狀相同的個白球和個黑球)摸出個球,若該次摸出的個球顏色都相同,則可獲得獎金元;記第次獲獎概率.設(shè)各次摸獎的結(jié)果互不影響,最終所獲得的總獎金為10次獎金之和.
①求證:;
②若某顧客購買120元的商品,不考慮其它因素,從獲得獎金的期望分析,他應(yīng)該選擇哪一家商場?
【答案】(Ⅰ)分布列見解析,期望為20;(Ⅱ)①證明見解析;②選擇甲商場.
【解析】
(Ⅰ)的所有可能數(shù)值為為200,20,10,分別求出概率,由此能求出的分布列和期望;
(Ⅱ)①記,2,3,,為第次抽獎獲得的獎金,的取值為,0,求出,再證明;②由,即在甲商場抽獎得獎金的期望值更高,故選甲商場.
(Ⅰ)的所有可能數(shù)值為為200,20,10,
,
,
,
.
(Ⅱ)①記,2,3,,為第次抽獎獲得的獎金,的取值為,0,
且,
則,
所以
.
所以在定義域內(nèi)單調(diào)遞減,所以.
所以;
②由題得,,2,3,,10,
記為在乙商場抽獎獲得的總獎金,則,
,即在甲商場抽獎得獎金的期望值更高,故選甲商場.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩超市同時開業(yè),第一年的全年銷售額為a萬元,由于經(jīng)營方式不同,甲超市前n年的總銷售額為 (n2-n+2)萬元,乙超市第n年的銷售額比前一年銷售額多a萬元.
(1)求甲、乙兩超市第n年銷售額的表達(dá)式;
(2)若其中某一超市的年銷售額不足另一超市的年銷售額的50%,則該超市將被另一超市收購,判斷哪一超市有可能被收購?如果有這種情況,將會出現(xiàn)在第幾年?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ) 求曲線在點處的切線方程;
(Ⅱ) 討論函數(shù)的單調(diào)性;
(Ⅲ) 設(shè),當(dāng)時,若對任意的,存在,使得≥,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市通過抽樣調(diào)查的方法獲得了100戶居民某月用水量(單位:t)的頻率分布直方圖:
(Ⅰ)求這100戶居民該月用水量的平均值;
(Ⅱ)從該月用水量在和兩個區(qū)間的用戶中,用分層抽樣的方法邀請5戶的戶主共5人參加水價調(diào)整方案聽證會,現(xiàn)從這5人中隨機選取2人在會上進(jìn)行陳述發(fā)言,求選取的2人均來自用水量低于2.5t的用戶的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點為,右焦點為,直線與軸相交于點,且是的中點.
(Ⅰ)求橢圓的離心率;
(Ⅱ)過點的直線與橢圓相交于兩點,都在軸上方,并且在之間,且到直線的距離是到直線距離的倍.
①記的面積分別為,求;
②若原點到直線的距離為,求橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=asin2x+bcos2x(a,b∈R,ab≠0),若f(x)對一切x∈R恒成立,給出以下結(jié)論:
①;
②;
③f(x)的單調(diào)遞增區(qū)間是;
④函數(shù)y=f(x)既不是奇函數(shù)也不是偶函數(shù);
⑤存在經(jīng)過點(a,b)的直線與函數(shù)f(x)的圖象不相交,其中正確結(jié)論為_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四校錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,邊長為4的正△PAD所在平面與平面ABCD垂直,點E是AD的中點,點Q是側(cè)棱PC的中點.
(1)求四棱錐P﹣ABCD的體積;
(2)求證:PA∥平面BDQ;
(3)在線段AB上是否存在點F,使直線PF與平面PAD所成的角為30°?若存在,求出AF的長,若不存在,請說明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形與直角梯形所在的平面互相垂直,其中,,,,為的中點
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)設(shè)為線段上一點,,若直線與平面所成角的正弦值為,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)求函數(shù)的圖像在點處的切線方程.
(Ⅱ)若且對任意恒成立,求的最大值;
(Ⅲ)當(dāng)時,證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com